Лемма Бёрнсайда и Теорема Пойа — различия между версиями
(→Теорема Пойа) |
(→Лемма Бёрнсайда) |
||
Строка 24: | Строка 24: | ||
|id=lemmaBerns. | |id=lemmaBerns. | ||
|author=Бернсайд, '''англ.''' Burnside's lemma | |author=Бернсайд, '''англ.''' Burnside's lemma | ||
− | |statement=Число орбит равно средней мощности стабилизатора элементов группы <tex>G</tex>. <math>|X/G| = \ | + | |statement=Число орбит равно средней мощности стабилизатора элементов группы <tex>G</tex>. <math>|X/G| = \dfrac{1} {|G|}\sum\limits_{g \in G}|St(g)|</math>. |
|proof= | |proof= | ||
Так как <tex>St(g)</tex> {{---}} стабилизатор элемента <tex>g</tex>, то по определению <math>\sum\limits_{g \in G}|St(g)| = |\{(x, g) \in G\times X \mid g\cdot x = x\}|</math>. | Так как <tex>St(g)</tex> {{---}} стабилизатор элемента <tex>g</tex>, то по определению <math>\sum\limits_{g \in G}|St(g)| = |\{(x, g) \in G\times X \mid g\cdot x = x\}|</math>. | ||
Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство: | Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство: | ||
− | < | + | <math>|X/G|\cdot|G| = |\{(x, g) \in G\times X \mid g\cdot x = x\}|</math> |
Введем обозначение <tex>C=X/G</tex>. | Введем обозначение <tex>C=X/G</tex>. | ||
Рассмотрим правую часть равенства: | Рассмотрим правую часть равенства: | ||
− | < | + | <math>|\{(x, g) \in G\times X \mid g\cdot x = x\}| = \sum\limits_{x \in X} |G_x| = \sum\limits_{x \in X}</math><math> \dfrac{|G|}{|Gx|} = |G| \sum\limits_{x \in X}\dfrac{1}{|Gx|} </math> |
− | < | + | <math>= |G|\sum\limits_{P\in C}\sum\limits_{x\in P}</math><math> \dfrac{1}{|P|}</math> |
− | Заметим, что < | + | Заметим, что <math>\sum\limits_{x\in P} \dfrac{1}{|P|} \dfrac{1}{|P|}\sum\limits_{1}^{|P|}{1} = 1.</math> Следовательно: |
− | < | + | <math>|G|\sum\limits_{P\in C}\sum\limits_{x\in P} \dfrac{1}{|P|} = |G|\sum\limits_{P\in C} 1</math>. |
− | Очевидно, что < | + | Очевидно, что <math>\sum\limits_{P\in C} 1 = \sum\limits_{1}^{|C|}{1} = |C|.</math> Тогда получим: |
− | < | + | <math>|G|\sum\limits_{P\in C} 1 = |C|\cdot|G|.</math> |
Откуда следует, что | Откуда следует, что | ||
− | < | + | <math>\sum\limits_{g \in G}|St(g)| = |C|\cdot|G|.</math> |
}} | }} |
Версия 18:07, 7 февраля 2018
Иногда требуется провести подсчет комбинаторных объектов с точностью до некоторого отношения эквивалетности. Если это отношение является отношением "с точностью до действия элементом группы", то такой подсчет можно провести с помощью Леммы Бернсайда.
Определение: |
Пусть группа действует на множество . Неподвижной точкой для элемента называется такой элемент , для которого . |
Определение: |
Множество неподвижных точек элемента | называется его стабилизатором и обозначается .
Определение: |
Пусть группа | действует на множество . Будем называть два элемента и эквивалентными, если для некоторого . Классы эквивалентности данного отношения называются орбитами, множество орбит обозначается как .
Содержание
Лемма Бёрнсайда
Лемма (Бернсайд, англ. Burnside's lemma): |
Число орбит равно средней мощности стабилизатора элементов группы . . |
Доказательство: |
Так как — стабилизатор элемента , то по определению .Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство: Введем обозначение .Рассмотрим правую часть равенства: Заметим, что Следовательно:. Очевидно, что Тогда получим:
Откуда следует, что |
Теорема Пойа
Теорема Пойа является обобщением леммы Бёрнсайда. Она также позволяет находить количество классов эквивалентности, но уже используя такую величину, как кол-во циклов в перестановке. В основе доказательства теоремы Пойа лежит лемма Бёрнсайда.
Теорема (Пойа, англ. Pólya enumeration theorem): |
,где — кол-во различных классов эквивалентности, — кол-во циклов в перестановке , — кол-во различных состояний одного элемента. |
Доказательство: |
Для доказательства этой теоремы достаточно установить следующее равенство
|
Задача о числе раскрасок прямоугольника
Задача: |
Выведите формулу для числа раскрасок прямоугольника | в цветов с точностью до отражения относительно горизонтальной и вертикальной оси.
Решим данную задачу, воспользуясь леммой Бёрнсайда.
Решение
Для начала определим, какие операции определены на группе
— это операция "отражение относительно горизонтальной оси", обозначим ее как , "отражение относительно вертикальной оси" — и "переход из одного состояния в него же" — . Таким образом, содержит 4 комбинации операций: .Стоит уделить особое внимание тому факту, что никакие иные комбинации функций
и не были включены в . Это объясняется довольно просто: очевидно то, что операции коммутативны, то есть , а также то, что , тогда любая комбинация данных функций может быть упрощена до вышеперечисленных (в ) путем совмещения одинаковых и замены их на .Отметим также то, что количество раскрасок прямоугольника
в цветов:- 1. С точностью до операции при нечетном равно количеству раскрасок прямоугольника в цветов.
- 2. С точностью до операции при нечетном равно количеству раскрасок прямоугольника в цветов.
- 3. С точностью до операции при нечетных и равно количеству раскрасок прямоугольника в цветов (а также частные случаи, когда или нечетные).
Данное множество фактов объясняется тем, что мы можем как бы "слить" вместе два столбика (и\или) столбца, при этом с точностью до нужного действия количество раскрасок не уменьшится.
Количество неподвижных точек в случае с действием
равно , так как ни одна раскрашенная клетка не повторилась при действии нулевого действия. Для действий и количество раскрасок будет и соответственно.Тогда воспользуемся Леммой Бёрнсайда и определим количество таких раскрасок.