Шифратор и дешифратор — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Принцип работы дешифратора)
Строка 1: Строка 1:
 +
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 +
|+
 +
|-align="center"
 +
|'''НЕТ ВОЙНЕ'''
 +
|-style="font-size: 16px;"
 +
|
 +
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 +
 +
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 +
 +
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 +
 +
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 +
 +
''Антивоенный комитет России''
 +
|-style="font-size: 16px;"
 +
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 +
|-style="font-size: 16px;"
 +
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 +
|}
 +
 
{{Определение
 
{{Определение
 
|definition='''Шифратор''' (англ. ''encoder'') — [[Реализация булевой функции схемой из функциональных элементов| логическая схема]], имеющая <tex>2^n</tex> входов <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{2^n - 1}</tex> и <tex>n</tex> выходов <tex>z_0</tex>, <tex>z_1</tex>, <tex>\ldots</tex>, <tex>z_{n-1}</tex>. Если на <tex>i</tex>-ый вход <tex>s_i</tex> подать <tex>1</tex>, а на остальные входы — <tex>0</tex>, то выходы <tex>z_0</tex>, <tex>z_1</tex>, <tex>\ldots</tex>, <tex>z_{n-1}</tex> будут кодировать число <tex>i</tex>.
 
|definition='''Шифратор''' (англ. ''encoder'') — [[Реализация булевой функции схемой из функциональных элементов| логическая схема]], имеющая <tex>2^n</tex> входов <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{2^n - 1}</tex> и <tex>n</tex> выходов <tex>z_0</tex>, <tex>z_1</tex>, <tex>\ldots</tex>, <tex>z_{n-1}</tex>. Если на <tex>i</tex>-ый вход <tex>s_i</tex> подать <tex>1</tex>, а на остальные входы — <tex>0</tex>, то выходы <tex>z_0</tex>, <tex>z_1</tex>, <tex>\ldots</tex>, <tex>z_{n-1}</tex> будут кодировать число <tex>i</tex>.

Версия 09:31, 1 сентября 2022

НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.


Определение:
Шифратор (англ. encoder) — логическая схема, имеющая [math]2^n[/math] входов [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{2^n - 1}[/math] и [math]n[/math] выходов [math]z_0[/math], [math]z_1[/math], [math]\ldots[/math], [math]z_{n-1}[/math]. Если на [math]i[/math]-ый вход [math]s_i[/math] подать [math]1[/math], а на остальные входы — [math]0[/math], то выходы [math]z_0[/math], [math]z_1[/math], [math]\ldots[/math], [math]z_{n-1}[/math] будут кодировать число [math]i[/math].


Определение:
Дешифратор (англ. decoder) — логическая схема, имеющая [math]n[/math] входов [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math] и [math]2^n[/math] выходов [math]z_0[/math], [math]z_1[/math], [math]\ldots[/math], [math]z_{2^n-1}[/math]. На все выходы подаётся [math]0[/math], кроме выхода [math]z_i[/math], на который подаётся [math]1[/math], где [math]i[/math] — число, которое закодировано входами [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math]


Принцип работы шифратора

Шифратор 4-to-2

Принцип работы шифратора заключается в том, что выходы [math]z_0[/math], [math]z_1[/math], [math]\ldots[/math], [math]z_{n-1}[/math] кодируют один из входов [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{2^n-1}[/math] в двоичной системе счисления. Очевидно, что если подать на несколько входов значение [math]1[/math], то такая схема будет работать некорректно. В качестве примера рассмотрим шифратор [math]4[/math]-to-[math]2[/math]. Если [math]s_0 = 1[/math], то [math]z_0 = z_1 = 0[/math], если же [math]s_1 = 1[/math], то [math]z_0 = 1[/math] и [math]z_1 = 0[/math]. Остальные случаи разбираются аналогичным образом.

[math]S_0[/math] [math]S_1[/math] [math]S_2[/math] [math]S_3[/math] [math]Z_0[/math] [math]Z_1[/math]
[math]\textbf{1}[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]0[/math] [math]\textbf{1}[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]1[/math]
[math]0[/math] [math]0[/math] [math]\textbf{1}[/math] [math]0[/math] [math]1[/math] [math]0[/math]
[math]0[/math] [math]0[/math] [math]0[/math] [math]\textbf{1}[/math] [math]1[/math] [math]1[/math]

Логическая схема шифратора

Построить логическую схему шифратора можно следующим образом: давайте будем использовать гейт [math]OR[/math], который имеет [math]m[/math] входов (где [math]m[/math] — какое-то натуральное число), и на выходе возвращает [math]0[/math], если на всех его входах будет подано [math]0[/math], в противном случае этот гейт вернёт [math]1[/math]. Давайте рядом с каждым выходом [math]z_i[/math] поставим гейт [math]OR[/math], и будем, по необходимости, расширять этот гейт. Тогда для каждого входа рассмотрим двоичное представление номера этого входа, и если на [math]i[/math]-ом месте стоит [math]1[/math], то соединим этот вход с гейтом [math]OR[/math], который соединён с выходом [math]z_i[/math]. Очевидно, если подать ровно на один вход [math]1[/math], то выходы будут кодировать это число в двоичном представлении (если подать [math]1[/math] на вход [math]s_0[/math], то на всех выходах будет [math]0[/math], а сам вход не будет соединён ни с каким гейтом).

Логическая схема шифратора [math]2[/math]-to-[math]1[/math]
Логическая схема шифратора [math]4[/math]-to-[math]2[/math]

Принцип работы дешифратора

Дешифратор [math]2[/math]-to-[math]4[/math]

Суть дешифратора заключается в том, что с помощью [math]n[/math] входов [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math] можно задавать выход, на который будет подаваться [math]1[/math]. Для того, чтобы лучше понять, как работает дешифратор, рассмотрим в качестве примера дешифратор [math]2[/math]-to-[math]4[/math] (это значит, что у этого дешифратора есть два входа [math]s_0[/math] и [math]s_1[/math] и четыре выхода [math]z_0[/math], [math]z_1[/math], [math]z_2[/math] и [math]z_3[/math]). Если [math]s_0 = s_1 = 0[/math], то на выходе [math]z_0[/math] будет значение [math]1[/math], на остальных выходах будет [math]0[/math]. Если же [math]s_0 = 1[/math], [math]s_1 = 0[/math], то на выходе [math]z_1[/math] будет [math]1[/math], на остальных выходах будут [math]0[/math]. Если [math]s_0 = 0[/math], [math]s _1 = 1[/math], то на выходе [math]z_2[/math] будет [math]1[/math], а на остальных входах будет [math]0[/math]. Если же [math]s_0 = s_1 = 1[/math], то на выходе [math]z_3[/math] будет [math]1[/math], а на других — [math]0[/math].

[math]S_0[/math] [math]S_1[/math] [math]Z_0[/math] [math]Z_1[/math] [math]Z_2[/math] [math]Z_3[/math]
[math]\textbf{0}[/math] [math]\textbf{0}[/math] [math]\textbf{1}[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\textbf{1}[/math] [math]\textbf{0}[/math] [math]0[/math] [math]\textbf{1}[/math] [math]0[/math] [math]0[/math]
[math]\textbf{0}[/math] [math]\textbf{1}[/math] [math]0[/math] [math]0[/math] [math]\textbf{1}[/math] [math]0[/math]
[math]\textbf{1}[/math] [math]\textbf{1}[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]\textbf{1}[/math]

Логическая схема дешифратора

Давайте построим логическую схему дешифратора рекурсивным способом: допустим, что мы построили схему для [math]n-1[/math] входа, теперь попробуем слить [math]n[/math]-ый выход с предыдущими [math]n-1[/math]. Для [math]n=1[/math] схема выглядит тривиальным образом: от входа [math]s_0[/math] отходят два провода, один напрямую соединён с выходом [math]z_1[/math], другой соединён с гейтом [math]NOT[/math], а гейт [math]NOT[/math] соединён с выходом [math]z_0[/math]. Теперь допустим, что мы можем построить схему для [math]n-1[/math] входов. Тогда [math]n[/math]-ый вход соединим с дешифратором [math]1[/math]-to-[math]2[/math], а первые [math]n-1[/math] входы соединим с дешифратором [math](n-1)[/math]-to-[math](2^{n-1})[/math] и потом соединим каждый выход дешифратора [math](n-1)[/math]-to-[math](2^{n-1})[/math] с каждым выходом дешифратора [math]1[/math]-to-[math]2[/math] с помощью гейтов [math]AND[/math], потом соединим соответствующие гейты с выходами [math]z_i[/math] таким образом, чтобы значение на входе [math]z_i[/math] было равно [math]1[/math] только в том случае, если число [math]i[/math] кодируется входами [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math]. Очевидно, что мы таким образом перебрали всевозможные комбинации значений на входах [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math], поэтому наша схема будет работать верно.

Логическая схема дешифратора [math]1[/math]-to-[math]2[/math]
Логическая схема дешифратора [math]2[/math]-to-[math]4[/math]

Использование в реальной жизни

Принцип работы дешифратора используется при построении мультиплексора и демультиплексора. Также шифраторы и дешифраторы используются в том случае, когда надо передавать большое количество данных, при этом использовать много проводов затруднительно (к примеру телеграф). В этом случае они позволяют использовать малое количество проводов, обеспечивая при этом наибольшее возможное количество состояний, которое может быть передано.

См. также

Источники информации