Теорема Эдмондса-Лоулера — различия между версиями
Строка 20: | Строка 20: | ||
Конструктивно построим <tex>\forall M_1, M_2</tex> такие <tex>I \in I_1 \cap I_2</tex> и <tex>A \subseteq X</tex>, что <tex>|I| = r_1(A) + r_2(X \setminus A)</tex>. | Конструктивно построим <tex>\forall M_1, M_2</tex> такие <tex>I \in I_1 \cap I_2</tex> и <tex>A \subseteq X</tex>, что <tex>|I| = r_1(A) + r_2(X \setminus A)</tex>. | ||
+ | |||
+ | Обозначим <tex>S = \left\{x|I \cup \{x\} \in I_1\right\}</tex>, <tex>T = \left\{x|I \cup \{x\} \in I_2\right\}</tex>. Если <tex>S \cap T \ne \varnothing</tex>, добавим их пересечение в <tex>I</tex>. | ||
+ | |||
+ | Построим [[Граф замен для двух матроидов|граф замен]] <tex>G_I</tex>. Добавим вершину <tex>z</tex>, не влияющую на независимость в первом матроиде — из неё будут вести рёбра во все вершины множества <tex>S</tex>. Пусть <tex>p</tex> — кратчайший путь из <tex>S</tex> в <tex>T</tex>, <tex>p_1</tex> — путь <tex>p</tex> с добавленным в начало ребром из <tex>z</tex>. По [[Лемма о единственном паросочетании в графе замен|лемме о единственном паросочетании]] и [[Лемма о единственном паросочетании в подграфе замен, индуцированном кратчайшим путем|лемме о единственном паросочетании, индуцированном кратчайшем путём]] <tex>I \oplus p_1 \in I_2</tex>. Теперь добавим вершину <tex>u</tex>, не влияющую на независимость во втором матроиде — в неё будут вести рёбра из всех вершин множества <tex>T</tex>. Тогда <tex>p_2</tex> (путь <tex>p</tex> с добавленным ребром в <tex>u</tex>) — кратчайший путь из <tex>S</tex> в <tex>u</tex>. Аналогично, <tex>I \oplus p_2 \in I_1</tex>. Отсюда следует, что <tex>I \oplus p \in I_1 \cap I_2</tex>, причём <tex>|I \oplus p| = |I| + 1</tex>. | ||
+ | |||
+ | Будем таким образом увеличивать <tex>I</tex>, пока существует путь <tex>p</tex>. Рассмотрим момент, когда такого пути не нашлось. | ||
+ | Введём обозначение: <tex>A = \{u|u \rightsquigarrow T\}</tex>. | ||
+ | |||
+ | Докажем, что <tex>r_1(A) = |I \cap A|</tex> от противного. | ||
+ | Пусть <tex>r_1(A) > |I \cap A|</tex>, тогда существует <tex>z \in A \setminus (I \cap A)</tex>, такое, что <tex>(I \cap A) \cup \{z\} \in I_1</tex>. Если <tex>I \cup \{z\} \in I_1</tex>, то <tex>z \in S</tex> и из <tex>S</tex> есть путь в <tex>A</tex>. Значит, <tex>I \cup \{z\} \notin I_1</tex>. Отсюда следует, что существует <tex>y \in I \setminus A</tex>, такое что <tex>I \setminus \{y\} \cup \{z\} \in I_1</tex>. Но тогда ребро <tex>yz</tex> имеется в графе, что противоречит отсутствию пути из <tex>S</tex> в <tex>T</tex>. | ||
+ | |||
+ | Следовательно, <tex>r_1(A) = |I \cap A|</tex>. Аналогично, <tex>r_2(\overline A) = |I \cap \overline A|</tex>. Отсюда <tex>r_1(A) + r_2(\overline A) = |I|</tex>, то есть при найденных <tex>I</tex> и <tex>A</tex> достигается равенство. | ||
+ | |||
+ | Построен пример равенства, значит, теорема доказана. | ||
}} | }} |
Версия 21:22, 14 июня 2011
Условие теоремы
Теорема (Эдмондса - Лоулера): |
Пусть , — матроиды. Тогда Где . и — ранговые функции в первом и втором матроиде соответственно. |
Доказательство: |
Докажем неравенство
Обозначим , . Если , добавим их пересечение в .Построим граф замен . Добавим вершину , не влияющую на независимость в первом матроиде — из неё будут вести рёбра во все вершины множества . Пусть — кратчайший путь из в , — путь с добавленным в начало ребром из . По лемме о единственном паросочетании и лемме о единственном паросочетании, индуцированном кратчайшем путём . Теперь добавим вершину , не влияющую на независимость во втором матроиде — в неё будут вести рёбра из всех вершин множества . Тогда (путь с добавленным ребром в ) — кратчайший путь из в . Аналогично, . Отсюда следует, что , причём . Будем таким образом увеличивать , пока существует путь . Рассмотрим момент, когда такого пути не нашлось. Введём обозначение: .Докажем, что от противного. Пусть , тогда существует , такое, что . Если , то и из есть путь в . Значит, . Отсюда следует, что существует , такое что . Но тогда ребро имеется в графе, что противоречит отсутствию пути из в .Следовательно, Построен пример равенства, значит, теорема доказана. . Аналогично, . Отсюда , то есть при найденных и достигается равенство. |