Математический анализ 2 курс — различия между версиями
Строка 2: | Строка 2: | ||
Виталик, прости, я не удержался. | Виталик, прости, я не удержался. | ||
− | + | [http://ru.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE_%D0%92%D0%B8%D1%82%D0%B0%D0%BB%D0%B8 Множество Витали] | |
=== Глава X Мера и интеграл Лебега === | === Глава X Мера и интеграл Лебега === |
Версия 22:07, 5 января 2012
Виталик, прости, я не удержался.
Множество Витали
Содержание
Глава X Мера и интеграл Лебега
- Полукольца и алгебры
- Мера на полукольце множеств
- Внешняя мера
- Мера, порожденная внешней мерой
- Процесс Каратеодори
- Объём n-мерного прямоугольника
- Мера Лебега в R^n
TODO: Achtung! тут ещё не конец // вроде конец, но в седьмом параграфе кое-чего не хватает.
Глава XI Измеримые функции
- Определение измеримой функции
- Предельный переход в классе измеримых функций
- Сходимость по мере
- Классические теоремы теории измеримых функций
Глава XII Интеграл Лебега
- Определение интеграла Лебега от ограниченных функций по множествам конечной меры
- Некоторые элементарные свойства интеграла Лебега
- Предельный переход под знаком интеграла Лебега
- Неотрицательные суммируемые функции
- Суммируемые функции произвольного знака
- Классические теоремы о предельном переходе под знаком интеграла Лебега
- Пространство L_p(E)
- Мера подграфика
- Теорема Фубини
- Точки Лебега суммируемой функции