Неукорачивающие и контекстно-зависимые грамматики, эквивалентность — различия между версиями
Leugenea (обсуждение | вклад) м (Бысрый фикс) |
Leugenea (обсуждение | вклад) м (Идиотский баг) |
||
Строка 32: | Строка 32: | ||
|id= ==lemma== | |id= ==lemma== | ||
|statement=Любая контекстно-зависимая грамматика является неукорачивающей. | |statement=Любая контекстно-зависимая грамматика является неукорачивающей. | ||
− | |proof= Заметим, что в [[Иерархия Хомского формальных грамматик#Класс 1|определении контекстно-зависимой грамматики]] <tex>\gamma</tex> не пуста, поэтому <tex>|\alpha A \beta| \ | + | |proof= Заметим, что в [[Иерархия Хомского формальных грамматик#Класс 1|определении контекстно-зависимой грамматики]] <tex>\gamma</tex> не пуста, поэтому <tex>|\alpha A \beta| \le |\alpha \gamma \beta|</tex>. Следовательно, такая грамматика является неукорачивающей по [[Иерархия Хомского формальных грамматик#Класс 1|определению]]. |
}} | }} | ||
Таким образом, для любой неукорачивающей грамматики можно построить эквивалентную ей контекстно-зависимую, а любая контекстно-зависимая грамматика является неукорачивающей. Значит, эти грамматики задают один и тот же класс языков. | Таким образом, для любой неукорачивающей грамматики можно построить эквивалентную ей контекстно-зависимую, а любая контекстно-зависимая грамматика является неукорачивающей. Значит, эти грамматики задают один и тот же класс языков. |
Версия 06:13, 24 января 2012
Теорема: |
Для любой неукорачивающей грамматики существует эквивалентная контекстно-зависимая грамматика . |
Доказательство: |
Рассмотрим правило из . Будем строить правила для контекстно-зависимой грамматики . Каждое правило , где , из заменим набором следующих правил:
причём нетерминалы свои для каждого правила из и .В словах языка, задаваемого грамматикой, не может быть нетерминалов, поэтому если в процессе вывода будет применено правило , то впоследствии должны быть применены все остальные правила. В противном случае нетерминалы или будут присутствовать в выведенном слове.Правила вида По , где оставляем без изменений. определению в нет правил другого вида. Получившаяся грамматика является эквивалентной грамматике , так в результате применения набора правил строка перейдёт в строку . Осталось заметить, что по определению получившаяся грамматика является контекстно-зависимой. |
Лемма: |
Любая контекстно-зависимая грамматика является неукорачивающей. |
Доказательство: |
Заметим, что в определении контекстно-зависимой грамматики не пуста, поэтому . Следовательно, такая грамматика является неукорачивающей по определению. |
Таким образом, для любой неукорачивающей грамматики можно построить эквивалентную ей контекстно-зависимую, а любая контекстно-зависимая грамматика является неукорачивающей. Значит, эти грамматики задают один и тот же класс языков.