Покрытие рёбер графа путями — различия между версиями
м |
м |
||
Строка 3: | Строка 3: | ||
Пусть <tex>G</tex> {{---}} [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов#cite_note-almost-0|почти связный]] граф, в котором <tex>2N</tex> вершин имеют нечетную [[Основные определения теории графов|степень]]. Тогда множество ребер <tex>G</tex> можно покрыть <tex>N</tex> реберно простыми путями. | Пусть <tex>G</tex> {{---}} [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов#cite_note-almost-0|почти связный]] граф, в котором <tex>2N</tex> вершин имеют нечетную [[Основные определения теории графов|степень]]. Тогда множество ребер <tex>G</tex> можно покрыть <tex>N</tex> реберно простыми путями. | ||
|proof= | |proof= | ||
− | [[Файл:Make_edges_paths_1.png| | + | [[Файл:Make_edges_paths_1.png|180px|right|thumb|Пример графа для <tex>N = 2</tex>]] |
'''Необходимость'''<br/> | '''Необходимость'''<br/> |
Версия 23:09, 25 апреля 2012
Следующее утверждение являются следствием из критерия Эйлеровости графа:
Теорема: |
Пусть почти связный граф, в котором вершин имеют нечетную степень. Тогда множество ребер можно покрыть реберно простыми путями. — |
Доказательство: |
Необходимость Достаточность |
См. также
Литература
- Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6