Покрытие рёбер графа путями

Материал из Викиконспекты
Перейти к: навигация, поиск

Следующее утверждение являются следствием из критерия Эйлеровости графа:

Теорема:
Пусть [math]G[/math] — связный граф, в котором [math]2N[/math] вершин имеют нечётную степень. Тогда множество рёбер [math]G[/math] можно покрыть [math]N[/math] рёберно-простыми путями.
Доказательство:
[math]\triangleright[/math]

Рассмотрим граф [math]G,[/math] который содержит [math]2N[/math] вершин, имеющих нечётную степень. Докажем, что его можно покрыть [math]N[/math] рёберно-простыми путями.

Добавим в граф [math]N[/math] рёбер, соединив попарно вершины, имеющие нечётные степени, и получим связный граф [math]G',[/math] все вершины которого имеют чётную степень. Такой граф удовлетворяет критерию эйлеровости и содержит эйлеров цикл. Рассмотрим этот цикл и удалим из него [math]N[/math] добавленных ребер [math]G' \backslash G.[/math] Цикл распадётся на [math]N[/math] путей, которые являются простыми, так как рассматриваемый цикл эйлеров, и покрывают весь граф, поэтому полученное разбиение является искомым.
[math]\triangleleft[/math]

См. также[править]

Источники информации[править]

  • Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6