Решение RMQ с помощью разреженной таблицы — различия между версиями
(→Применение к задаче RMQ) |
Smolcoder (обсуждение | вклад) (→Постановка задачи RMQ) |
||
Строка 1: | Строка 1: | ||
'''Разреженная таблица''' (англ. ''sparse table'') позволяет решать задачу online static RMQ за <tex>O(1)</tex> на запрос, с предподсчётом за <tex>O(N \log N)</tex> и использованием <tex>O(N \log N)</tex> памяти. | '''Разреженная таблица''' (англ. ''sparse table'') позволяет решать задачу online static RMQ за <tex>O(1)</tex> на запрос, с предподсчётом за <tex>O(N \log N)</tex> и использованием <tex>O(N \log N)</tex> памяти. | ||
== Постановка задачи RMQ == | == Постановка задачи RMQ == | ||
− | Дан массив <tex>A[1..N]</tex> целых чисел. Поступают запросы вида <tex>(l, r)</tex> | + | Дан массив <tex>A[1..N]</tex> целых чисел. Поступают запросы вида <tex>(l, r)</tex>, для каждого из которых требуется найти минимум среди элементов <tex>A[l], A[l + 1], \dots, A[r] </tex>. |
== Разреженная таблица == | == Разреженная таблица == |
Версия 15:36, 11 июня 2012
Разреженная таблица (англ. sparse table) позволяет решать задачу online static RMQ за
на запрос, с предподсчётом за и использованием памяти.Содержание
Постановка задачи RMQ
Дан массив
целых чисел. Поступают запросы вида , для каждого из которых требуется найти минимум среди элементов .Разреженная таблица
Разреженная таблица — двумерная структура данных
, для которой выполнено следующее:.
Иначе говоря, в этой таблице хранятся минимумы на всех отрезках, длины которых равны степеням двойки. Объём памяти, занимаемый таблицей, равен
, и заполненными являются только те элементы, для которых .Простой метод построения таблицы заключён в следующем реккурентном соотношении:
Идемпотентность
Такая простота достигается за счет идемпотентности операции минимум:
. Это один из ключевых моментов этого метода, так как она позволяет нам корректно считать минимум в области пересечения отрезков. <wikitex> Пусть $\circ$ — произвольная бинарная операция, которая удовлетворяет свойствам:- ассоциативности: $a \circ (b \circ c) = (a \circ b) \circ c $;
- коммутативности: $a \circ b = b \circ a$;
- идемпотентности: $a \circ a = a $.
Утверждение: |
$a_l \circ a_{l+1} \circ \dots \circ a_r = (a_l \circ a_{l+1} \circ \dots \circ a_k) \circ (a_{r - k} \circ a_{r - k + 1} \circ \dots \circ a_r)$, где $l \leqslant k \leqslant r$. |
Отрезок $(a_{r-k}, a_k)$ содержится в обои операндах правой части. Значит, каждый элемент из него входит два раза. По коммутативности мы можем располагать элементы в любом порядке, по ассоциативности мы можем выполнять операции в произвольном порядке, поэтому повторяющие в правой части элементы мы можем расположить рядом друг с другом и затем по идемпотентности один из них убрать. Переставляя оставшиеся элементы в правой затем легко получаем выражение в левой части. |
</wikitex>
Применение к задаче RMQ
Предпосчитаем для длины отрезка
величину . Это можно сделать за введением функции , для которой верно .
Пусть теперь дан запрос
. Заметим, что , где , т.е. логарифм длины запрашиваемого отрезка, округленный вниз. Но эту величину мы уже предпосчитали, поэтому запрос выполняется за .Стоит отметить, что этот метод работает не только с операцией минимум, но и с любой идемпотентной, ассоциативной и коммутативной операцией, так как отрезки
и , на которых мы считаем ответ, есть те самые из доказанного утверждения. Таким образом мы получаем целый класс задач, решаемых разреженной таблицей.См. также
Источники
- Bender, M.A., Farach-Colton, M. et al. — Lowest common ancestors in trees and directed acyclic graphs. — J. Algorithms 57(2) (2005) — с. 75–94.