Компактный оператор — различия между версиями
Sementry (обсуждение | вклад) м (→Пример) |
Sementry (обсуждение | вклад) м (→Пример) |
||
Строка 32: | Строка 32: | ||
<tex> T \subset C[0,1] </tex> — относительно компактное <tex>\iff</tex> | <tex> T \subset C[0,1] </tex> — относительно компактное <tex>\iff</tex> | ||
− | # <tex> \forall x \in T : \|x\| \leq M </tex> | + | # <tex>\exists M\ \forall x \in T : \|x\| \leq M </tex> |
# <tex> \forall \varepsilon > 0 \ \exists \delta > 0 : | t'' - t' | < \delta \implies \forall x \in T : | x(t') - x(t'') | < \varepsilon </tex> — '''равностепенная непрерывность'''. | # <tex> \forall \varepsilon > 0 \ \exists \delta > 0 : | t'' - t' | < \delta \implies \forall x \in T : | x(t') - x(t'') | < \varepsilon </tex> — '''равностепенная непрерывность'''. | ||
Версия 20:04, 10 июня 2013
Напоминание: все рассматриваемые пространства считаем Банаховыми.
Определение: |
Множество называется относительно компактным (предкомпактным), если его замыкание компактно |
Определение: |
Линейный ограниченный оператор | называется компактным, если переводит любое ограниченное подмножество в относительно компактное множество из .
Из определения ясно, что мы получаем усиление ограниченности, так как любое относительно компактное множество — ограничено.
Пример
Рассмотрим пространство
. Пусть — непрерывно на и ограничено: .Введем оператор
как , где .Зададим норму
.Утверждение: |
Оператор — компактный. |
Проверим, что реализуются условия теоремы Арцела-Асколи TODO: которой у нас не было о предкомпактности множества в : — относительно компактное
Рассмотрим и .
непрерывна на компакте , следовательно, равномерно непрерывна на нем. Отсюда, Таким образом, . , получили равностепенную непрерывность . |
Критерий проверки компактности
Замечание: в бесконечномерном пространстве шар не будет компактом (следствие из теоремы Рисса о почти перпендикуляре), следовательно,
— не компактен.Для определения компактности используется критерий Хаусдорфа: множество компактно тогда и только тогда, когда оно замкнуто и вполне ограниченно, то есть у него существует конечная -сеть.
Произведение компактных операторов
Утверждение: |
|
<wikitex>Докажем первый случай, второй доказывается аналогично. Рассмотрим единичный шар $V = \{ x \mid \ |
Утверждение (следствие): |
Если — компактный оператор, то он (в бесконечномерном случае) не может быть непрерывно обратимым. |
От противного: пусть | — компактный по доказанному утверждению, что невозможно в бесконечномерном случае.
Утверждение: |
Пусть — компактный, тогда — сепарабельно (то есть, в существует счетное всюду плотное подмножество). |
— счетное объединение шаров.
— относительно компактно. Используя теорему Хаусдорфа, можно показать, что любое относительно компактное множество сепарабельно: объединение -сетей для от до счетно и оно будет всюду плотным в этом множестве. Счетное объединение сепарабельных множеств — сепарабельно, значит — сепарабельно. |