Матрица Кирхгофа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Определение матрицы Кирхгофа)
м
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
'''Матрицей Кирхгофа''' простого графа <tex>G = (V,E) </tex> называется матрица <tex> K (|V| \times |V|) = \parallel k_{i,j} \parallel  </tex>, элементы которой определяются равенством: <tex>
+
'''Матрицей Кирхгофа''' [http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B9_%D0%B3%D1%80%D0%B0%D1%84#.D0.BF.D1.80.D0.BE.D1.81.D1.82.D0.BE.D0.B9_.D0.B3.D1.80.D0.B0.D1.84 простого графа] <tex>G = (V,E) </tex> называется матрица <tex> K (|V| \times |V|) = \parallel k_{i,j} \parallel  </tex>, элементы которой определяются равенством: <tex>
 
k_{i,j} =  
 
k_{i,j} =  
 
\begin{cases}
 
\begin{cases}

Версия 22:45, 16 декабря 2013

Определение:
Матрицей Кирхгофа простого графа [math]G = (V,E) [/math] называется матрица [math] K (|V| \times |V|) = \parallel k_{i,j} \parallel [/math], элементы которой определяются равенством: [math] k_{i,j} = \begin{cases} \deg(v_i), \ i = j \\ -1, \ (v_i,v_j) \in E \\ 0, \mbox{ else}. \end{cases} [/math]

Иными словами, на главной диагонали матрицы Кирхгофа находятся степени вершин, а на пересечении [math]i[/math]-й строки и [math]j[/math]-го столбца ([math]i \ne j[/math]) стоит -1, если вершины с номерами [math]i[/math] и [math]j[/math] смежны, и 0 в противном случае.

Пример матрицы Кирхгофа

Граф Матрица Кирхгофа
Kirhgof matrix 1.png [math]\left(\begin{array}{rrrrrr} 2 & -1 & 0 & 0 & -1 & 0\\ -1 & 3 & -1 & 0 & -1 & 0\\ 0 & -1 & 2 & -1 & 0 & 0\\ 0 & 0 & -1 & 3 & -1 & -1\\ -1 & -1 & 0 & -1 & 3 & 0\\ 0 & 0 & 0 & -1 & 0 & 1\\ \end{array}\right)[/math]

Некоторые свойства

1) Матрица Кирхгофа является симметрической (т.е. симметрична относительно главной диагонали).

2) Связь с матрицей смежности:

[math] K = \begin{pmatrix} deg(v_1) & 0 & \cdots & 0 \\ 0 & deg(v_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & deg(v_n) \end{pmatrix} - A, [/math]

где [math]A[/math] — матрица смежности графа [math]G[/math].

3) Связь с матрицей инцидентности: [math] K = I \cdot I^T, [/math] где [math]I[/math] — матрица инцидентности некоторой ориентации графа.

Источники

Асанов М., Баранский В., Расин В. — Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001, 288 стр.
Википедия, Матрица Кирхгофа