Snap rounding — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Свойства)
Строка 21: Строка 21:
 
Пусть нам дано множество отрезков <tex>A</tex>, тогда полученный после выравнивания планарный граф <tex>A^*</tex> должен обладать следующими свойствами:
 
Пусть нам дано множество отрезков <tex>A</tex>, тогда полученный после выравнивания планарный граф <tex>A^*</tex> должен обладать следующими свойствами:
  
# '''Фиксированная точность координат:''' все координаты <tex>A^*</tex> должны лежать в узлах некоторой &epsilon; решётки.
+
# '''Фиксированная точность координат:''' все координаты <tex>A^*</tex> должны лежать в узлах некоторой решётки с шагом <tex>2 \varepsilon</tex>.
# '''Геометрическое подобие:''' <tex>A^*</tex> должен полностью лежать в области, полученной [[Сумма Минковского (определение, вычисление)|суммой Минковского]] <tex>A</tex> и квадрата со стороной &epsilon;.
+
# '''Геометрическое подобие:''' <tex>A^*</tex> должен полностью лежать в области, полученной [[Сумма Минковского (определение, вычисление)|суммой Минковского]] <tex>A</tex> и квадрата со стороной <tex>2 \varepsilon</tex>.
 
# '''Топологическое подобие:''' Существует непрерывное преобразование <tex>A</tex> в <tex>A^*</tex>.
 
# '''Топологическое подобие:''' Существует непрерывное преобразование <tex>A</tex> в <tex>A^*</tex>.
  

Версия 22:56, 3 августа 2014

Эта статья находится в разработке!

Введение

Рисунок 1а — Ложное пересечение отрезков.
Рисунок 1б — Устранение пересечения созданием новой точки.
Рисунок 2а — Нарушение целостности контура.
Рисунок 2б — Замыкание контура объединением общих точек.

Snap rounding (фиксирование выравнивания) — это алгоритм, который восстанавливает топологию множества отрезков, координаты которого заданны с некоторой ε погрешностью.

Мотивация

Пусть у нас есть множество отрезков, чьи координаты были получены с некоторой абсолютной погрешностью. В такой структуре может быть нарушена топология, а это может повлиять на работу других алгоритмов над этой структурой.

Например, если у нас появилось ложное пересечение (рисунок 1) мы можем получить отрицательное "расстояние" до прямой, если ожидаем, что все точки лежат с одной стороны относительное неё. Ещё, из-за недостаточной точности, может быть нарушена замкнутость контура (рисунок 2), что приведёт, например, к неправильной заливки области в графическом редакторе.

Свойства

Пусть нам дано множество отрезков [math]A[/math], тогда полученный после выравнивания планарный граф [math]A^*[/math] должен обладать следующими свойствами:

  1. Фиксированная точность координат: все координаты [math]A^*[/math] должны лежать в узлах некоторой решётки с шагом [math]2 \varepsilon[/math].
  2. Геометрическое подобие: [math]A^*[/math] должен полностью лежать в области, полученной суммой Минковского [math]A[/math] и квадрата со стороной [math]2 \varepsilon[/math].
  3. Топологическое подобие: Существует непрерывное преобразование [math]A[/math] в [math]A^*[/math].

Алгоритм

Упрощение выравнивания

Замечания

Ссылки

См. также