Доказательство нерегулярности языков: лемма о разрастании — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 7: Строка 7:
 
Пусть <tex>L</tex> - регулярный язык над алфавитом <tex>\Sigma</tex>, тогда найдётся автомат <tex>A</tex>, допускающий язык <tex>L</tex>. Обозначим размер автомата <tex>A</tex>, как <tex>n</tex>. В языке <tex>L</tex> найдётся слово <tex>\omega</tex> длины не меньше <tex>n</tex>. Рассмотрим переходы в автомате <tex>\langle s,\omega\rangle \vdash\langle u_1, \omega[0]^{-1}\omega\rangle\vdash\dots\vdash\langle u_{l},\epsilon\rangle, \: l\geqslant n</tex>. Так как <tex>l</tex> не меньше количества состояний в автомате <tex>n</tex>, то в переходах будет совпадение. Пусть <tex>u_i</tex> и <tex>u_j</tex> - первое совпадение. Тогда в нашем слове <tex>\omega</tex> можно размножить кусок, который отвечает за переход, от состояния <tex>u_i</tex> к состоянию <tex>u_j</tex>.  
 
Пусть <tex>L</tex> - регулярный язык над алфавитом <tex>\Sigma</tex>, тогда найдётся автомат <tex>A</tex>, допускающий язык <tex>L</tex>. Обозначим размер автомата <tex>A</tex>, как <tex>n</tex>. В языке <tex>L</tex> найдётся слово <tex>\omega</tex> длины не меньше <tex>n</tex>. Рассмотрим переходы в автомате <tex>\langle s,\omega\rangle \vdash\langle u_1, \omega[0]^{-1}\omega\rangle\vdash\dots\vdash\langle u_{l},\epsilon\rangle, \: l\geqslant n</tex>. Так как <tex>l</tex> не меньше количества состояний в автомате <tex>n</tex>, то в переходах будет совпадение. Пусть <tex>u_i</tex> и <tex>u_j</tex> - первое совпадение. Тогда в нашем слове <tex>\omega</tex> можно размножить кусок, который отвечает за переход, от состояния <tex>u_i</tex> к состоянию <tex>u_j</tex>.  
  
[[Файл:Regularpumpingpicture.jpg]]
+
[[Файл:Regularpicture.jpg]]
  
  

Версия 00:00, 15 октября 2010

Лемма (О разрастании):
Пусть [math]L[/math] - регулярный язык над алфавитом [math]\Sigma[/math], тогда существует [math]n[/math], такой что для любого слова [math] \omega \in L[/math], длины не меньше [math] n [/math] найдутся слова [math] x,y,z \in \Sigma^*[/math], для которых верно [math]xyz=\omega, y\neq \varepsilon, |xy|\leqslant n[/math] и [math]xy^{k}z\in L[/math] для всех [math] k \geqslant 0[/math].
Доказательство:
[math]\triangleright[/math]

Пусть [math]L[/math] - регулярный язык над алфавитом [math]\Sigma[/math], тогда найдётся автомат [math]A[/math], допускающий язык [math]L[/math]. Обозначим размер автомата [math]A[/math], как [math]n[/math]. В языке [math]L[/math] найдётся слово [math]\omega[/math] длины не меньше [math]n[/math]. Рассмотрим переходы в автомате [math]\langle s,\omega\rangle \vdash\langle u_1, \omega[0]^{-1}\omega\rangle\vdash\dots\vdash\langle u_{l},\epsilon\rangle, \: l\geqslant n[/math]. Так как [math]l[/math] не меньше количества состояний в автомате [math]n[/math], то в переходах будет совпадение. Пусть [math]u_i[/math] и [math]u_j[/math] - первое совпадение. Тогда в нашем слове [math]\omega[/math] можно размножить кусок, который отвечает за переход, от состояния [math]u_i[/math] к состоянию [math]u_j[/math].

Regularpicture.jpg


То есть если верно [math]\langle s, xyz\rangle \vdash^*\langle u_i, yz\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle[/math], то тогда верно [math]\langle s, xy^kz\rangle \vdash^*\langle u_i, y^kz\rangle\vdash^*\langle u_j, y^{k-1}z\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle[/math]. Тогда автомат [math]A[/math] допускает слово [math]xy^kz[/math], следовательно [math]xy^kz[/math] принадлежит регулярному языку [math]L[/math].
[math]\triangleleft[/math]


Доказательство нерегулярности языка

Чаще используется отрицание леммы для доказательства нерегулярности языка. Пусть [math]L[/math] - язык над алфавитом [math]\Sigma[/math]. Если для любого натурального [math]n[/math] найдётся такое слово [math]\omega[/math] из данного языка, что его длина будет не меньше [math] n[/math] и при любом разбиении на три слова [math]x,y,z[/math] такие, что [math] : y[/math] не пустое слово, длина [math]xy[/math] не больше [math]n[/math], есть [math]k[/math] такое, что [math]xy^kz \overline\in L[/math], то язык [math]L[/math] - не регулярный.


Пример 1 Язык правильных скобочных последовательностей не регулярен.

Пусть дан какой-то [math]n[/math] для него предъявляем слово [math]\omega=(^n)^n[/math]. После этого слово [math]\omega[/math] как-то разбили на [math]x, y, z[/math]. Так как [math]|xy|\leqslant n[/math], то из-за выбранного слова [math]y=(^b[/math], где [math]b[/math] больше нуля. Для любого такого разбиения берём [math]k=2[/math] и получаем [math]xy^kz=(^{n+b})^n[/math], что не является правильной скобочной последовательностью. Значит язык правильных скобочных последовательностей не регулярный язык.

Пример 2 Язык [math]\{0^a1^a\}_{a\geqslant 0}[/math]

Пусть дан какой-то [math]n[/math] для него предъявляем слово [math]\omega=0^n1^n[/math]. После этого слово [math]\omega[/math] как-то разбили на [math]x, y, z[/math]. Так как [math]|xy|\leqslant n[/math], то из-за выбранного слова [math]y=0^b[/math], где [math]b[/math] больше нуля. Для любого такого разбиения берём [math]k=2[/math] и получаем [math]xy^kz=0^{n+b}1^n[/math], что не является элементом множества слов языка [math]\{0^a1^a\}_{a\geqslant 0}[/math], значит этот язык не регулярен.