Квантовые конечные автоматы — различия между версиями
Alex Z (обсуждение | вклад) (→Описание) |
Alex Z (обсуждение | вклад) (→Одномерный квантовый конечный автомат) |
||
Строка 38: | Строка 38: | ||
=== Одномерный квантовый конечный автомат=== | === Одномерный квантовый конечный автомат=== | ||
Авторы '''одномерного''' (англ. ''Measure-one'', ''1-way'') ККА {{---}} Cris Moore и James P. Crutchfield (2000). Главное свойство {{---}} допускать [[Регулярные языки: два определения и их эквивалентность | регулярный язык]]. | Авторы '''одномерного''' (англ. ''Measure-one'', ''1-way'') ККА {{---}} Cris Moore и James P. Crutchfield (2000). Главное свойство {{---}} допускать [[Регулярные языки: два определения и их эквивалентность | регулярный язык]]. | ||
− | В таком виде конечный автомат с <tex>N</tex> состояниями представляется в виде [[Кубит | кубита]] <math>|\psi\rangle</math> c <tex>N</tex> состояниями. | + | В таком виде конечный автомат с <tex>N</tex> состояниями представляется в виде [[Кубит | кубита]] <math>|\psi\rangle</math> c <tex>N</tex> состояниями. |
+ | :<math>|\psi\rangle \in CP^N</math>. | ||
+ | |||
+ | Такой кубит приносит в пространство метрику <math>\Vert\cdot\Vert</math>. | ||
Матрицы смежности остаются унитарными, а переход в новое сосояние по символу <tex>\alpha</tex> : | Матрицы смежности остаются унитарными, а переход в новое сосояние по символу <tex>\alpha</tex> : | ||
:<math>|\psi'\rangle = U_\alpha |\psi\rangle</math>. | :<math>|\psi'\rangle = U_\alpha |\psi\rangle</math>. |
Версия 02:48, 11 января 2015
Неформально говоря квантовый конечный автомат — это квантовый аналог конечного автомата, который использует квантовые гейты. Главной особенностью является допущение некоторого языка за экспоненциально меньший размер, чем обычные конечные автоматы.
Содержание
Определение
Определение: |
Квантовый конечный автомат (ККА) (англ. Quantum finite automata, QFA) — это кортеж :
| , где
Кроме того, ККА является частным случаем Геометрического конечного автомата и Топологического конечного автомата[1].
Принцип работы
- На вход подается строчка .
- На выходе мы получаем число , являющееся вероятностью данного конечного автомата быть в допускающем состоянии.
Описание
Для начало воспользуемся графовым представлением ДКА. Пусть в нем вершин и все вершины пронумерованы. Тогда для представления такого графа можно воспользоваться набором матриц смежности таких, что каждая матрица размера и что для каждого символа сопоставляется единственная матрица из этого набора. Каждая матрица записана и таким образом, что означает переход из состояние в по символу , а — его отсутствие. В этом случаи, текущее состояние автомата записывается как вектор, размерности , в котором будет лишь одна единица, обозначающая текущее положение состояния. При помощи такого описания можно легко делать переходы из нынешнего состояние в новое состояние по символу обыкновенным умножением матриц.
Пусть у нас есть ДКА с
вершинами и его . Тогда по описанному определению можно составить матрицы смежности размерности . Так же введем — размерный вектор , описывающее состояние ДКА, a — начальное состояние автомата. Тогда для перехода из состояния в по строчке нужно воспользоваться правилом умножения матриц из линейной алгебры :Описанное выше по сути и является ККА, но в амплитуды вероятностей, a матрицы — унитарные матрицы. Для ККА характерено геометрическая интерпретация в пространстве . С этой стороны вектор является точкой, a — операторы эволюции в представлении Шредингера [2].
записываютсяВ дополнении для ККА можно упомянуть пару особенностей :
- НКА. Из-за свойство НКА в векторе алгоритм Томпсона, то построенные на их основе Квантовые конечные автоматы не будут эквивалентны. Эта проблема является одно научно-исследовательских задач в теории ККА. и в столбцах матриц может находиться несколько . Если в этом случаи рассмотреть
- Вероятностный конечный автомат. Для его построения нужно всего лишь в ККА использовать стохастические матрицы[3] для и вектор вероятностей состояний для . Одно из свойств — сумма всех элементов равна и для того чтобы во всех переходах сохранялось это свойство и нужны стохастические матрицы.
Одномерный квантовый конечный автомат
Авторы одномерного (англ. Measure-one, 1-way) ККА — Cris Moore и James P. Crutchfield (2000). Главное свойство — допускать регулярный язык. В таком виде конечный автомат с состояниями представляется в виде кубита c состояниями.
- .
Такой кубит приносит в пространство метрику
. Матрицы смежности остаются унитарными, а переход в новое сосояние по символу :- .
Переход в допускающее состояние производиться матрицей-проектором[4] .
Вероятность
, где равна :Многомерный квантовый конечный автомат
Определение: |
Многомерный (или Двухмерный) квантовый конечный автомат (англ. Measure-many, 2-way QFA) — это кортеж :
| , где
Многомерный ККА был введен Attila Kondacs и John Watrous в 1997. Главное свойство — допускать нерегулярный язык
за линейное время.Принципы многомерного ККА очень схож с Одномерным, за исключением применение матрицы гильбертово пространство. Пусть у нас есть гильбертово пространство :
после каждого итерации символа строки. Для формального определения понадобиться, где — допускающее пр-во , — отвергающее пр-во , — промежуточное пр-во. Для каждого пр-ва существует наборы базисных ординальных векторов соответственно :
- линейная оболочка , где —
Так же в многомерном ККА присутствуют 3 матрицы-проектора :
, и для каждого гильбертово пр-ва :Переход в новое состояние кубита остается таким же, но после каждого перехода кубит коллпасирует в одно из 3 гильбертовых пр-в
. Для того чтобы определить вероятность автомата находиться в допускающем состоянии нужно :- , где — входящая строчка
См. также
- Детерминированные конечные автоматы
- Недетерминированные конечные автоматы
- Построение по НКА эквивалентного ДКА, алгоритм Томпсона
Примечания
Источники информации
- Andris Ambainis, QUANTUM FINITE AUTOMATA
- Wikipedia — Quantum finite automata