Квантовые конечные автоматы — различия между версиями
Alex Z (обсуждение | вклад) (→Многомерный квантовый конечный автомат) |
Alex Z (обсуждение | вклад) (→Многомерный квантовый конечный автомат) |
||
| Строка 70: | Строка 70: | ||
<math>\mathcal{H}_Q=\mathcal{H}_a \oplus \mathcal{H}_r \oplus \mathcal{H}_{non}</math> , где <math> \mathcal{H}_a </math> {{---}} допускающее пр-во , <math> \mathcal{H}_r </math> {{---}} отвергающее пр-во , <math> \mathcal{H}_{non} </math> {{---}} промежуточное пр-во. Для каждого пр-ва существует наборы базисных ординальных векторов <tex>Q , Q_a \subset Q, Q_r \subset Q , Q_{non}\subset Q</tex> соответственно : | <math>\mathcal{H}_Q=\mathcal{H}_a \oplus \mathcal{H}_r \oplus \mathcal{H}_{non}</math> , где <math> \mathcal{H}_a </math> {{---}} допускающее пр-во , <math> \mathcal{H}_r </math> {{---}} отвергающее пр-во , <math> \mathcal{H}_{non} </math> {{---}} промежуточное пр-во. Для каждого пр-ва существует наборы базисных ординальных векторов <tex>Q , Q_a \subset Q, Q_r \subset Q , Q_{non}\subset Q</tex> соответственно : | ||
| − | :<math>\mathcal{H}_a=\operatorname{span} \{|q\rangle : |q\rangle \in Q_a \}, \mathcal{H}_r = \dots , \mathcal{H}_{non} = \dots </math> , где <math>\operatorname{span}</math> {{---}} линейная оболочка<ref>[wikipedia | + | :<math>\mathcal{H}_a=\operatorname{span} \{|q\rangle : |q\rangle \in Q_a \}, \mathcal{H}_r = \dots , \mathcal{H}_{non} = \dots </math> , где <math>\operatorname{span}</math> {{---}} линейная оболочка<ref>[https://en.wikipedia.org/wiki/Linear_span {{---}} Lineal span]</ref> |
Так же в многомерном ККА присутствуют 3 матрицы-проектора : <math>P_a</math>, <math>P_r</math> и <math> P_{non} </math> для каждого гильбертово пр-ва : | Так же в многомерном ККА присутствуют 3 матрицы-проектора : <math>P_a</math>, <math>P_r</math> и <math> P_{non} </math> для каждого гильбертово пр-ва : | ||
Версия 03:25, 11 января 2015
Неформально говоря квантовый конечный автомат — это квантовый аналог конечного автомата, который использует квантовые гейты. Главной особенностью является допущение некоторого языка за экспоненциально меньший размер, чем обычные конечные автоматы.
Содержание
Определение
| Определение: |
Квантовый конечный автомат (ККА) (англ. Quantum finite automata, QFA) — это кортеж : , где
|
Кроме того, ККА является частным случаем Геометрического конечного автомата и Топологического конечного автомата[1].
Принцип работы
- На вход подается строчка .
- На выходе мы получаем число , являющееся вероятностью данного конечного автомата быть в допускающем состоянии.
Описание
Для начало воспользуемся графовым представлением ДКА. Пусть в нем вершин и все вершины пронумерованы. Тогда для представления такого графа можно воспользоваться набором матриц смежности таких, что каждая матрица размера и что для каждого символа сопоставляется единственная матрица из этого набора. Каждая матрица записана и таким образом, что означает переход из состояние в по символу , а — его отсутствие. В этом случаи, текущее состояние автомата записывается как вектор, размерности , в котором будет лишь одна единица, обозначающая текущее положение состояния. При помощи такого описания можно легко делать переходы из нынешнего состояние в новое состояние по символу обыкновенным умножением матриц.
Пусть у нас есть ДКА с вершинами и его . Тогда по описанному определению можно составить матрицы смежности размерности . Так же введем — размерный вектор , описывающее состояние ДКА, a — начальное состояние автомата. Тогда для перехода из состояния в по строчке нужно воспользоваться правилом умножения матриц из линейной алгебры :
Описанное выше по сути и является ККА, но в записываются амплитуды вероятностей, a матрицы — унитарные матрицы. Для ККА характерено геометрическая интерпретация в пространстве . С этой стороны вектор является точкой, a — операторы эволюции в представлении Шредингера [2].
В дополнении для ККА можно упомянуть пару особенностей :
- НКА. Из-за свойство НКА в векторе и в столбцах матриц может находиться несколько . Если в этом случаи рассмотреть алгоритм Томпсона, то построенные на их основе Квантовые конечные автоматы не будут эквивалентны. Эта проблема является одно научно-исследовательских задач в теории ККА.
- Вероятностный конечный автомат. Для его построения нужно всего лишь в ККА использовать стохастические матрицы[3] для и вектор вероятностей состояний для . Одно из свойств — сумма всех элементов равна и для того чтобы во всех переходах сохранялось это свойство и нужны стохастические матрицы.
- Марковская цепь.
Одномерный квантовый конечный автомат
Авторы одномерного (англ. Measure-one, 1-way) ККА — Cris Moore и James P. Crutchfield (2000). Главное свойство — допускать регулярный язык. В таком виде конечный автомат с состояниями представляется в виде кубита c состояниями.
- .
Такой кубит приносит в пространство метрику Фубини-Штуди[4] . Матрицы смежности остаются унитарными, а переход в новое сосояние по символу :
- .
Переход в допускающее состояние производиться матрицей-проектором[5] .
Вероятность , где равна :
Многомерный квантовый конечный автомат
| Определение: |
Многомерный (или Двухмерный) квантовый конечный автомат (англ. Measure-many, 2-way QFA) — это кортеж : , где
|
Многомерный ККА был введен Attila Kondacs и John Watrous в 1997. Главное свойство — допускать нерегулярный язык за линейное время.
Принципы многомерного ККА очень схож с Одномерным, за исключением применение матрицы после каждого итерации символа строки. Для формального определения понадобиться гильбертово пространство. Пусть у нас есть гильбертово пространство :
, где — допускающее пр-во , — отвергающее пр-во , — промежуточное пр-во. Для каждого пр-ва существует наборы базисных ординальных векторов соответственно :
- , где — линейная оболочка[6]
Так же в многомерном ККА присутствуют 3 матрицы-проектора : , и для каждого гильбертово пр-ва :
Переход в новое состояние кубита остается таким же, но после каждого перехода кубит коллпасирует в одно из 3 гильбертовых пр-в . Для того чтобы определить вероятность автомата находиться в допускающем состоянии нужно :
- , где — входящая строчка
См. также
- Детерминированные конечные автоматы
- Недетерминированные конечные автоматы
- Построение по НКА эквивалентного ДКА, алгоритм Томпсона
Примечания
Источники информации
- Andris Ambainis, QUANTUM FINITE AUTOMATA
- Wikipedia — Quantum finite automata