Детерминированные автоматы с магазинной памятью — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м (Пример)
Строка 16: Строка 16:
 
# <tex>\delta(p,1,X)=(p,X)</tex> <br> <br>
 
# <tex>\delta(p,1,X)=(p,X)</tex> <br> <br>
 
[[Файл:Пример_мп-автомата.png]]
 
[[Файл:Пример_мп-автомата.png]]
 +
 +
== См. также ==
 +
* [[Детерминированные автоматы с магазинной памятью, допуск по пустому стеку]]
 +
* [[Несовпадение класса языков, распознаваемых ДМП автоматами и произвольными МП автоматами]]
 +
* [[ДМП-автоматы и неоднозначность]]
  
 
== Источники информации ==
 
== Источники информации ==

Версия 06:49, 17 января 2016

Определение:
Детерменированным автоматом с магазинной памятью (англ. deterministic pushdown automaton) называется автомат с магазинной памятью, для которого выполнены следующие условия:
  1. [math]\mathcal8 q \in Q, a \in \Sigma \cup \{ \varepsilon \}, X \in \Gamma \Rightarrow \delta(q, a, X)[/math] имеет не более одного элемента — [math] \delta : Q \times \Sigma \cup \{\varepsilon\} \times \Gamma \rightarrow Q \times \Gamma^*[/math].
  2. Если [math]\delta (q,a,X)[/math] непусто для некоторого [math]a \in \Sigma[/math], то [math]\delta (q,\varepsilon,X)[/math] должно быть пустым.


Пример

Автомат [math]A=(\{0,1\},\{q,p\},q, \{Z_0,X\}, Z_0,\{p\}, \delta)[/math] с функией перехода [math]\delta[/math]:

  1. [math]\delta(q,0,Z_0)=(q,XZ_0)[/math]
  2. [math]\delta(q,0,X)=(q,XX)[/math]
  3. [math]\delta(q,1,X)=(q,X)[/math]
  4. [math]\delta(q,1,Z_0)=(p,Z_0)[/math]
  5. [math]\delta(p,0,Z_0)=(p,XZ_0)[/math]
  6. [math]\delta(p,0,X)=(p,XX)[/math]
  7. [math]\delta(p,1,X)=(p,X)[/math]

Пример мп-автомата.png

См. также

Источники информации

  • Хопкрофт Д., Мотвани Р., Ульман Д.Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2008. — 528с. : ISBN 978-5-8459-1347-0 (рус.)