Алгоритм поиска блокирующего потока в ациклической сети — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м (Источники информации)
Строка 77: Строка 77:
  
 
==Источники информации==
 
==Источники информации==
*[http://www.e-maxx.ru/algo/dinic Алгоритм Диница. Необходимые определения.]
+
* [http://e-maxx.ru/algo/dinic MAXimal :: algo :: Алгоритм Диница]
 
*[http://www.facweb.iitkgp.ernet.in/~arijit/courses/autumn2006/cs60001/lec-flow-4.pdf The MPM Algorithm]
 
*[http://www.facweb.iitkgp.ernet.in/~arijit/courses/autumn2006/cs60001/lec-flow-4.pdf The MPM Algorithm]
 
*[http://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%9C%D0%B0%D0%BB%D1%85%D0%BE%D1%82%D1%80%D1%8B_%E2%80%94_%D0%9A%D1%83%D0%BC%D0%B0%D1%80%D0%B0_%E2%80%94_%D0%9C%D0%B0%D1%85%D0%B5%D1%88%D0%B2%D0%B0%D1%80%D0%B8 Алгоритм Малхотры — Кумара — Махешвари]
 
*[http://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%9C%D0%B0%D0%BB%D1%85%D0%BE%D1%82%D1%80%D1%8B_%E2%80%94_%D0%9A%D1%83%D0%BC%D0%B0%D1%80%D0%B0_%E2%80%94_%D0%9C%D0%B0%D1%85%D0%B5%D1%88%D0%B2%D0%B0%D1%80%D0%B8 Алгоритм Малхотры — Кумара — Махешвари]

Версия 23:43, 28 января 2016

Жадный алгоритм

Идея заключается в том, чтобы по одному находить пути из истока [math]s[/math] в сток [math]t[/math], пока это возможно. Обход в глубину найдёт все пути из [math]s[/math] в [math]t[/math], если из [math]s[/math] достижима [math]t[/math], а пропускная способность каждого ребра [math]c(u, v)\gt 0[/math] поэтому, насыщая рёбра, мы хотя бы единожды достигнем стока [math]t[/math], следовательно блокирующий поток всегда найдётся.

Используя [math]dfs[/math], каждый путь находится за [math]O(E)[/math], где [math]E[/math] — число рёбер в графе. Поскольку каждый путь насыщает как минимум одно ребро, всего будет [math]O(E)[/math] путей. Итого общая асимптотика составляет [math]O(E^2)[/math].

Удаляющий обход

Аналогично предыдущей идее, однако будем удалять в процессе обхода в глубину из графа все рёбра, вдоль которых не получится дойти до стока [math]t[/math]. Это очень легко реализовать: достаточно удалять ребро после того, как мы просмотрели его в обходе в глубину (кроме того случая, когда мы прошли вдоль ребра и нашли путь до стока). С точки зрения реализации, надо просто поддерживать в списке смежности каждой вершины указатель на первое не удалённое ребро, и увеличивать этот указать в цикле внутри обхода в глубину. Корректность при этом сохраняется согласно предыдущему пункту.

 int dfs(int [math]v[/math], int flow) 
   if (flow == 0) 
     return 0
   if ([math]v[/math] == [math]t[/math])
     return flow
   for ([math]u[/math] = ptr[[math]v[/math]] to n)
     ptr[[math]v[/math]]++
     if ([math]vu \in E[/math])
       pushed = dfs([math]u[/math], min(flow, c([math]vu[/math]) - f([math]vu[/math])))
       f([math]vu[/math]) += pushed
       f([math]uv[/math]) -= pushed
       return pushed
   return 0
 main()
   ...
   flow = 0
   for (int i = 1 to n)
     ptr[i] = 0
   do
     pushed = dfs([math]s[/math], [math]\infty[/math])
     flow += pushed
   while (pushed > 0)


Если обход в глубину достигает стока, насыщается как минимум одно ребро, иначе как минимум один указатель продвигается вперед. Значит один запуск обхода в глубину работает за [math]O(V + K)[/math], где [math]V[/math] — число вершин в графе, а [math]K[/math] — число продвижения указателей. Ввиду того, что всего запусков обхода в глубину в рамках поиска одного блокирующего потока будет [math]O(P)[/math], где [math]P[/math] — число рёбер, насыщенных этим блокирующим потоком, то весь алгоритм поиска блокирующего потока отработает за [math]O(PV + \sum\limits_i{K_i})[/math], что, учитывая, что все указатели в сумме прошли расстояние [math]O(E)[/math], дает асимптотику [math]O(PV + E)[/math]. В худшем случае, когда блокирующий поток насыщает все ребра, асимптотика получается [math]O(VE)[/math].

Замечание: Если в алгоритме Диница искать блокирующий поток удаляющим обходом, то его эффективность составит [math]O(V^2E)[/math], что уже лучше эффективности алгоритма Эдмондса-Карпа [math]O(VE^2)[/math].

Алгоритм Малхотры — Кумара — Махешвари

Идея

Для каждой вершины вводится потенциал потока, равный максимальному дополнительному потоку, который может пройти через эту вершину. Далее запускаем цикл, на каждой итерации которого определяем вершину [math]v[/math] с минимальным потенциалом [math]p[/math]. Затем пускается поток величины [math]p[/math] из истока в сток, проходящий через эту вершину. При этом если остаточная пропускная способность ребра равна нулю, то это ребро удаляется. Также, удаляются все вершины, у которых не остаётся ни одного входящего и/или ни одного выходящего ребра. При удалении вершины все смежные ребра удаляются.

Подробное описание

  • Для каждой вершины [math]v[/math] вычислим входящий и исходящий потенциал: [math]p_{in}=\sum \limits_{u} c(u, v)[/math] и [math]p_{out}=\sum \limits_{u} c(u, v)[/math]. Пусть [math]p_{in}(s)=\infty[/math] и [math]p_{out}(t)=\infty[/math]. Определим потенциал или пропускную способность вершины в сети [math]p(v)=min(p_{in}(v), p_{out}(v))[/math]. Таким образом, потенциал вершины определяет максимально возможное количество потока, который может через нее проходить. Ясно, что через вершины с [math]p(v)=0[/math] поток проходить не может. Следовательно, их можно удалить из вспомогательной сети. Удалим эти вершины и дуги, им инцидентные, обновив должным образом потенциалы вершин, смежных с удаленными. Если в результате появятся новые вершины с [math]p(v)=0[/math], удалим рекурсивно и их. В результате во вспомогательной сети останутся только вершины с [math]p(v)\ne0[/math].
  • После этого приступим к построению блокирующего потока. Пусть вершина [math]v[/math] принадлежит [math]k[/math]-ому слою и [math]p(v)=min (p(w), w \in L_k)[/math], где [math]L_k[/math][math]k[/math]-й слой. Протолкнем [math]p(v)[/math] единиц потока из вершины [math]v[/math] в смежные с ней вершины по исходящим дугам с остаточной пропускной способностью [math]c_f \ne 0[/math]. Попутно будем переносить проталкиваемый поток в исходную сеть, а также корректировать потенциалы вершин, отправляющих и принимающих избыток потока. В результате, весь (в виду минимальности потенциала вершины [math]v[/math]) проталкиваемый поток соберется в вершинах [math](k+1)[/math]-го слоя.
  • Повторим процесс отправки потока из вершин [math](k+1)[/math]-го слоя, содержащих избыток потока, в смежные им вершины [math](k+2)[/math]-го слоя. И так до тех пор, пока весь поток не соберется в последнем слое, в котором содержится только сток [math]t[/math], ибо все остальные вершины, ранее ему принадлежащие, были удалены, поскольку их потенциалы нулевые. Следовательно, весь поток величины [math]p(v)[/math], отправленный из вершины [math]v[/math], где [math]p(v)[/math] - минимальный полностью соберется в [math]t[/math].
  • На втором этапе вновь, начиная с вершины [math]v[/math], осуществляется подвод потока уже по входящим дугам. В результате на первом шаге недостаток потока переадресуется к узлам [math](k-1)[/math]-го слоя, затем [math](k-2)[/math]-го. И так до тех пор, пока весь потока величины [math]p(v)[/math], отправленные из вершины [math]v[/math], где [math]p(v)[/math] - минимальный, не соберется в истоке [math]s[/math]. Таким образом, поток и во вспомогательной и в основной сети увеличится на величину [math]p[/math].


MPM algorithm([math]s, t[/math])
{
   foreach [math](uv) \in E[/math]
     [math]f(uv) \leftarrow 0 [/math];
   Вычисляем остаточную сеть [math]R[/math];
   Найдём вспомогательный граф [math]L[/math] для [math]R[/math];
   while ([math]t \in L[/math])
   {
     while ([math]t[/math] достижима из [math]s[/math] в [math]L[/math])
     {
       найдём [math]v[/math] с минимальной пропускной способностью [math]g[/math];
       проталкиваем [math]g[/math] единиц потока из [math]v[/math] в [math]t[/math];
       проталкиваем [math]g[/math] единиц потока из [math]s[/math] в [math]v[/math];
       изменяем [math]f[/math], [math]L[/math] и [math]R[/math];
     }
     вычисляем новый вспомогательный граф [math]L[/math] из [math]R[/math];
   }
}

Асимптотика

Если информация о входящих и исходящих дугах будет храниться в виде связных списков, то для того, чтобы пропустить поток, на каждой итерации будет выполнено [math]O(K + E_i)[/math] действий, где [math]K[/math] соответствует числу рёбер, для которых остаточная пропускная способность уменьшилась, но осталась положительной, а [math]E_i[/math] — числу удалённых ребер. Таким образом, для поиска блокирующего потока будет выполнено [math]\sum\limits_i{O(K+E_i)} = O(K^2)[/math] действий.

См. также

Источники информации