Панциклический граф — различия между версиями
(sums) |
(thumb + text picture 3) |
||
Строка 37: | Строка 37: | ||
Без потери общности пусть <tex> v_x = v_n </tex>. Рассмотрим <tex> 2|E| = \sum_{i=1}^n deg(v_i) = \sum_{i=1}^{\genfrac{}{}{}{}{n - 1}{2}} (deg(v_{2i-1}) + deg(v_{2i})) + deg(v_n) \leqslant \genfrac{}{}{}{0}{n(n-1)}{2} + </tex> <tex> \genfrac{}{}{}{0}{n-1}{2} < \genfrac{}{}{}{0}{n^2}{2} </tex>, то есть <tex> |E| < \genfrac{}{}{}{0}{n^2}{4} </tex>, но по условию <tex> |E| \geqslant \genfrac{}{}{}{0}{n^2}{4} </tex> {{---}} получили противоречие. Таким образом <tex> n </tex> является четным. Тогда верно, что <tex> 2|E| \leqslant \sum_{i=1}^n deg(v_i) = \sum_{i=1}^{\genfrac{}{}{}{}{n}{2}} (deg(v_{2i-1}) + deg(v_{2i})) \leqslant \genfrac{}{}{}{0}{n^2}{2} </tex>, а так как по условию <tex> |E| \geqslant \genfrac{}{}{}{0}{n^2}{4} </tex>, то <tex> |E| = \genfrac{}{}{}{0}{n^2}{4} </tex>. Данное равенство достигается, если верно, что: | Без потери общности пусть <tex> v_x = v_n </tex>. Рассмотрим <tex> 2|E| = \sum_{i=1}^n deg(v_i) = \sum_{i=1}^{\genfrac{}{}{}{}{n - 1}{2}} (deg(v_{2i-1}) + deg(v_{2i})) + deg(v_n) \leqslant \genfrac{}{}{}{0}{n(n-1)}{2} + </tex> <tex> \genfrac{}{}{}{0}{n-1}{2} < \genfrac{}{}{}{0}{n^2}{2} </tex>, то есть <tex> |E| < \genfrac{}{}{}{0}{n^2}{4} </tex>, но по условию <tex> |E| \geqslant \genfrac{}{}{}{0}{n^2}{4} </tex> {{---}} получили противоречие. Таким образом <tex> n </tex> является четным. Тогда верно, что <tex> 2|E| \leqslant \sum_{i=1}^n deg(v_i) = \sum_{i=1}^{\genfrac{}{}{}{}{n}{2}} (deg(v_{2i-1}) + deg(v_{2i})) \leqslant \genfrac{}{}{}{0}{n^2}{2} </tex>, а так как по условию <tex> |E| \geqslant \genfrac{}{}{}{0}{n^2}{4} </tex>, то <tex> |E| = \genfrac{}{}{}{0}{n^2}{4} </tex>. Данное равенство достигается, если верно, что: | ||
− | [[Файл:Circle 3.jpg|800px|right]] | + | [[Файл:Circle 3.jpg|800px|right|thumb|Слева направо изображены случаи 1-3. Красным выделены ребра, которые не могут быть в рассматриваемом графе, если в нем присутствуют ребра, выделенные зеленым]] |
*<tex> v_k </tex> лежит на дуге <tex> (v_{j + l - 1}, v_{j + l}, v_{j - 1}) </tex>: <tex> (v_j, v_k) \in E </tex> и <tex>(v_{j+1}, v_{k-l+3}) \notin E </tex> | *<tex> v_k </tex> лежит на дуге <tex> (v_{j + l - 1}, v_{j + l}, v_{j - 1}) </tex>: <tex> (v_j, v_k) \in E </tex> и <tex>(v_{j+1}, v_{k-l+3}) \notin E </tex> |
Версия 13:04, 18 декабря 2017
Содержание
Основные определения
Определение: |
Панциклический граф (англ. pancyclic graph) — граф, в котором есть циклы всех длин от | до .
Определение: |
-панциклический граф (англ. -pancyclic graph) — граф содержит все циклы от до . |
Основная теорема
Теорема (J. A. Bondy): |
Пусть — гамильтонов граф, .
Тогда верно одно из двух утверждений:
|
Доказательство: |
Обозначим как гамильтонов цикл в графе . Для простоты расположим на окружности. Также подразумевается, что все индексы при вершинах берутся по модулю, то есть .Пусть в графе нет цикла длины , (по условию в графе существует гамильтонов цикл, длина которого равна ). Рассмотрим две соседние вершины и вместе с ними рассмотрим следующие пары:Для таких, что лежит на дуге рассмотрим пары ( ) и ( ) (см. рисунок слева)Для таких, что лежит на дуге рассмотрим пары ( ) и ( ) (см. рисунок справа)При добавлении таких пар ребер в графе появляется цикл длины (выделены зеленым цветом на рисунках слева и справа). Действительно:
Значит в может входить максимум одно ребро из таких пар. Тогда можно утверждать, что .Докажем методом от противного, что — четно. Пусть является нечетным, тогда из рассуждений выше существует вершина , для которое верно, что . Пусть это не так, тогда , значит , то есть мы получили противоречие с тем, что . Без потери общности пусть . Рассмотрим , то есть , но по условию — получили противоречие. Таким образом является четным. Тогда верно, что , а так как по условию , то . Данное равенство достигается, если верно, что:
Пусть не , тогда существует такое четное число , что в графе существует ребро , то есть существует цикл нечетной длины. Докажем, что в таком случае существует ребро . Пусть это не так и минимальное четное , что больше двух, то есть . Тогда существует три случая:
|
Следствие
Утверждение: |
Пусть
Тогда верно одно из двух утверждений:
|
По теореме Оре — гамильтонов граф. Покажем, что . Пусть — минимальная степень вершины в графе.
|