Арифметические действия с числовыми рядами — различия между версиями
| Строка 53: | Строка 53: | ||
|statement= | |statement= | ||
Пусть ряд из <tex>a_n</tex> условно сходится. Тогда для любого <tex>A</tex> из <tex>\mathbb{R} \cup \{ -\infty; +\infty \}</tex> существует такая перестановка <tex>\varphi</tex>, что <tex>A = \sum\limits_{n = 1}^{\infty} a_{\varphi(n)}</tex>. | Пусть ряд из <tex>a_n</tex> условно сходится. Тогда для любого <tex>A</tex> из <tex>\mathbb{R} \cup \{ -\infty; +\infty \}</tex> существует такая перестановка <tex>\varphi</tex>, что <tex>A = \sum\limits_{n = 1}^{\infty} a_{\varphi(n)}</tex>. | ||
| + | }} | ||
| + | |||
| + | == Формула Эйлера == | ||
| + | |||
| + | Приведём пример условно сходящегося ряда и его перестановку, которая уменьшает сумму ряда в два раза. | ||
| + | |||
| + | Установим следующую формулу: | ||
| + | |||
| + | {{Теорема | ||
| + | |author= | ||
| + | Эйлер | ||
| + | |statement= | ||
| + | Выполняется равенство: | ||
| + | :<tex>H_n = \sum\limits_{k = 1}^{n} \frac 1k = \ln n + C + \gamma_n, \qquad \gamma_n \rightarrow 0</tex>, | ||
| + | где <tex>C</tex> называется постоянной Эйлера | ||
}} | }} | ||
Версия 06:37, 2 января 2011
Имея дело с суммой конечного числа слагаемых, можно менять слагаемые местами и расставлять скобки - от этого результат не изменится.
Числовой ряд - это сумма бесконечного числа слагаемых, и действия нужно производить с оглядкой на этот факт.
Как мы убедимся далее, абсолютно сходящиеся ряды полностью копируют поведение суммы конечного числа слагаемых, а условно сходящиеся - нет.
Расставление скобок
Под "расставлением скобок" в ряде понимают буквально следующее: пусть имеется последовательность
Из построения видно, что частичная сумма ряда является некоторой частичной суммой ряда . Если исходный ряд сходится, то и ряд с расставленными скобками сходится к той же сумме. Обратное неверно: рассмотрим ряд с расставленными скобками
Но ряд без скобок является расходящимся.
Легко установить факт: сходящийся ряд с расставленными скобками, в каждой скобке которого стоят слагаемые одного знака, сходится и без расставленных скобок.
Перестановка слагаемых ряда
Уточним, что понимается под перестановкой слагаемых ряда. Пусть - биекция.
Дан ряд . Рассмотрим ряд . Полученный ряд называется перестановкой ряда по правилу .
| Утверждение: |
Пусть ряд из сходится к . Тогда |
|
В силу положительности ряда частичные суммы ограничены.
|
| Теорема: |
Пусть ряд абсолютно сходится. Тогда любая его перестановка сходится к той же сумме. |
| Доказательство: |
|
По линейности суммы ряда разложим исходный ряд на сумму двух вспомогательных:
|
Для условно сходящихся рядов ситуация меняется. Имеет место теорема Римана (приводится без доказательства):
| Теорема (Риман): |
Пусть ряд из условно сходится. Тогда для любого из существует такая перестановка , что . |
Формула Эйлера
Приведём пример условно сходящегося ряда и его перестановку, которая уменьшает сумму ряда в два раза.
Установим следующую формулу:
| Теорема (Эйлер): |
Выполняется равенство:
|