Машинное обучение — различия между версиями
Glosus (обсуждение | вклад) (→В разработке) |
MuratOK (обсуждение | вклад) (→Классификация и регрессия) |
||
Строка 12: | Строка 12: | ||
=Классификация и регрессия= | =Классификация и регрессия= | ||
+ | *[[Оценка качества в задачах классификации и регрессии]] | ||
*[[Метрический классификатор и метод ближайших соседей]] | *[[Метрический классификатор и метод ближайших соседей]] | ||
*[[Дерево решений и случайный лес]] | *[[Дерево решений и случайный лес]] |
Версия 00:39, 20 марта 2020
Содержание
Общие понятия
- Общие понятия
- Переобучение
- Кросс-валидация
- Стохастический градиентный спуск
- Регуляризация
- Ранжирование
- Обучение с частичным привлечением учителя
- Жизненный цикл модели машинного обучения
Классификация и регрессия
- Оценка качества в задачах классификации и регрессии
- Метрический классификатор и метод ближайших соседей
- Дерево решений и случайный лес
- Вариации регрессии
- Линейная регрессия
- Логистическая регрессия
- Метод опорных векторов (SVM)
- Байесовская классификация
- Байесовские сети
- Поиск ближайших соседей с помощью иерархического маленького мира
Кластеризация
- Кластеризация
- Иерархическая кластеризация
- Оценка качества в задаче кластеризации
- Эволюционные алгоритмы кластеризации
Ансамбли
Нейронные сети
Глубокое обучение
- Глубокое обучение
- Настройка глубокой сети
- Batch-normalization
- Рекуррентные нейронные сети
- Долгая краткосрочная память
- Сегментация изображений
Сверточные сети
Порождающие модели
Обработка естественного языка
- Распознавание речи
- Обработка естественного языка
- Векторное представление слов
- Классификация текстов и анализ тональности