Интерпретируемые модели — различия между версиями
Frak (обсуждение | вклад) (→Другие свойства моделей) |
Frak (обсуждение | вклад) (→Свойства интерпретируемых моделей) |
||
Строка 47: | Строка 47: | ||
* Разложимость и модульность: свойства, при которых человек способен декомпозировать модель на интепретируемые компоненты. Например: [[Дерево решений и случайный лес| деревья решений]] или [[Линейная регрессия|линейный модели]] для небольшой размерности. | * Разложимость и модульность: свойства, при которых человек способен декомпозировать модель на интепретируемые компоненты. Например: [[Дерево решений и случайный лес| деревья решений]] или [[Линейная регрессия|линейный модели]] для небольшой размерности. | ||
− | * Доверие: пользователь доволен предсказаниями модели | + | * Доверие: пользователь доволен предсказаниями модели, также модель может показать, когда она не совсем уверена в своём предсказании. |
* Информативность: из модели можно выявить вспомогательную информацию полезную для принятия какого-либо решения. | * Информативность: из модели можно выявить вспомогательную информацию полезную для принятия какого-либо решения. |
Версия 01:43, 12 января 2021
Интерпретируемая модель — модель, обладающая свойством интерпретируемости.
Интерпретируемость — это свойство модели, которое показывает, что структуру данной модели может объяснить человек. При этом структура модели не противоречит данным, на которых данная модель построена, а также она сохраняет некоторые свойства предоставленных данных. При интерпретации модели могут быть объяснены принципы и закономерности, которые использует сама модель для предсказания на конкретных данных.
Содержание
Практическая польза
Если модель машинного обучения работает хорошо, почему мы просто не доверяем модели и игнорируем факторы, из-за которых она приняла то или иное решение? Проблема в том, что используя только метрику для измерения точности предсказания, возможно такое, что мы решим задачу не полностью или даже не правильно. Нас могут интересовать причины, по которым модель сделала это предсказание.[1]
Например: модель решает, когда нужно класть ковидного больного в палату, а когда отправлять лечиться дома. По статистике люди болеющие астмой выживают чаще, чем здоровые, и логично предположить, что их можно отправлять лечится дома, но дело в том, что этих людей врачи лечат более тщательней, поэтому они и выживают чаще. Если бы мы верили модели в слепую, то люди с астмой просто бы умирали. Поэтому нам важно понять, почему модель пришла к тому или иному выводу.
Когда нужна интерпретируемость
- Когда целью является получение каких-либо знаний с помощью изучения построенной модели.
- Когда алгоритм оптимизировал неполную цель. Например, когда автомобильный инженер получает предсказания о параметрах двигателя, но ему нужно построит в целом достаточно хороший и надёжный автомобиль.
- Для безопасности сложных систем. Такие системы, в большинстве случаев, нельзя протестировать от начала до конца. Вычислительно тяжело просмотреть все возможное входные данные и сценарии развития событий.
Когда интерпретируемость не требуется
- Влияние модели мало, а сама интерпретация требует большого количества ресурсов (предложение новых покупок на основе предыдущих в онлайн магазинах).
- Проблема хорошо разработана, и специалистов обучают ещё в университетах.
- Класс модели широко применяется: линейные модели (стоимость квартиры: понятно, что это метраж, расстояние до метро, школы, детского сада и т.д., но когда параметров много, то уже сложно всё это держать в голове).
- Необходимость скрыть систему (кому давать кредит, качество работы сотрудника, поисковое ранжирование).
Примеры моделей
Пример интерпретируемой модели
Допустим есть модель в банке, которая помогает решить, давать ли кредит человеку или нет. Приходит в банк Вася, модель отказывает ему в кредите, вопрос почему? Интерпретируемая модель ответит, потому что у него, допустим, плохая кредитная история или маленькая зарплата, а по не интерпретируемой модели вряд ли будет что-то понятно.
Пример эффективной в предсказании, но не интерпретируемой модели
Допустим есть данные и задача бинарной классификации, и 99% объектов имеют класс 1, остальные 0. Модель a(x) = 1, имеет точность 99%, но проинтерпретировать ее нельзя для каких-то наших исследований, особенно если нас интересуют, как возникает класс 0. Такая модель не интерпретируема, так как не информативна.
Свойства интерпретируемых моделей
- Предсказуемость и моделируемость: свойства, при которых человек способен предсказывать поведение и ошибки модели, а так же умение "симулировать" их. Например: сложные физические модели, где часто возможно абстрагировать простые правила для примерного предсказания результатов.
- Разложимость и модульность: свойства, при которых человек способен декомпозировать модель на интепретируемые компоненты. Например: деревья решений или линейный модели для небольшой размерности.
- Доверие: пользователь доволен предсказаниями модели, также модель может показать, когда она не совсем уверена в своём предсказании.
- Информативность: из модели можно выявить вспомогательную информацию полезную для принятия какого-либо решения.
- Cтабильность: статистические и оптимизационные свойства
Как создать интерпретируемую модель?
Использовать только интерпретируемые модели (англ. Transparent Models):
- Деревья решений, списки правил, наборы правил.
- Модели основывающиеся на предыдущем опыте.
Но не всё хорошо описывается этими моделями.
Построить интерпретируемую модель поверх эмбендинга
Пример: у нас есть лук. Если “лук” находится рядом с “чесноком”, то модель думает о “луке” как об овоще, если “лук” находится рядом с “пистолетом”, “рогаткой”, то модель думает о “луке” как об оружии.
Но модель теперь интерпретируема, но сами признаки перестают быть таковым.
Важность признаков
Одна из возможностей проанализировать модель — оценить, насколько её решение зависит от отдельных признаков.
SHAP — (англ. SHapley Additive exPlanations) Важность i-го признака здесь вычисляется по такой формуле:[2].
[3].
где:
— это предсказание модели с i-тым признаком,
— это предсказание модели без i-того признака,
— количество признаков,
— произвольный набор признаков без i-того признака.
Видно, что вычисление требует обучения модели на всевозможных подмножествах признаках, поэтому на практике применяют приближения формулы.
Суррогатные модели
LIME — (англ. Local Interpretable Model-agnostic Explanations) [4] Даже если простая модель не сможет смоделировать сложную во всём пространстве, в окрестности конкретной точки это вполне возможно. Локальные модели объясняют конкретный ответ чёрного ящика. Эта идея показана на рис. 2. У нас есть чёрный ящик (ЧЯ), который построен на данных. В некоторой точке он выдал ответ, мы генерируем выборку в окрестности этой точки, узнаём ответы ЧЯ и настраиваем обычный линейный классификатор. Он описывает ЧЯ в окрестности точки, хотя во всём пространстве он сильно отличается от ЧЯ. Из рис. 2 понятны достоинства и недостатки такого подхода.[5]
рис. 2. Построение локальной суррогатной модели.
См. также
Примечания
- ↑ Doshi-Velez and Kim "Towards A Rigorous Science of Interpretable Machine Learning" 2017 Page 5
- ↑ Реализация Shap [1]
- ↑ Павел Трошенков "Как интерпретировать предсказания моделей в SHAP" [2]
- ↑ Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin "Explaining the Predictions of Any Classifier" [3]
- ↑ Реализация Lime [4]
Источники информации
- Doshi-Velez and Kim "Towards A Rigorous Science of Interpretable Machine Learning" 2017[5]
- Sanmi Koyejo "Interpretability" MACHINE LEARNING SUMMER SCHOOL 2019 [6]