Циклическая группа
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Определение: |
Группа называется циклической, если у нее существует система образующих, состоящая из одного элемента . Тогда все элементы группы имеют вид . |
Любая циклическая группа абелева, т.к. степени одного и того же элемента коммутируют между собой.
Примерами циклических групп являются группы изоморфна при некотором , а любая бесконечная — .
и . Вообще, любая конечная циклическая группаКлассификации циклических групп
Теорема (О изоморфности циклических групп): |
Любая конечная циклическая группа изоморфна при некотором , а любая бесконечная — . |
Доказательство: |
Доказательство разбивается на два случая: порядок конечен или бесконечен.Пусть порядок бесконечен. Тогда рассмотрим отображение . Докажем, что — изоморфизм. Очевидно, что — гомоморфизм: . По определению циклической группы сюръективен. Докажем инъективность: пусть , тогда , т.е. порядок конечен, что приводит к противоречию. Поэтому — биекция, а значит, и изоморфизм.Пусть теперь порядок конечен и равен . Рассмотрим отображение . Докажем, что — гомоморфизм. Пусть . Тогда . Тогда:сюръективно по определению циклической группы. Докажем инъективность. Пусть , тогда
|