Метрические пространства
Версия от 23:02, 29 декабря 2012; Dgerasimov (обсуждение | вклад) (Новая страница: «{{Определение |id=def1 |definition= Для некоторого множества <tex>X</tex>, отображение <tex> \rho : X \times X \righta...»)
Определение: |
Для некоторого множества
| , отображение — называется метрикой на , если выполняются аксиомы
Некоторые примеры метрических пространств:
- В любом пространстве можно ввести дискретную метрику:
-
- этот ряд всегда сходящийся, так как мажорируется убывающей геометрической прогрессией , соответственно, расстояние ограничено единицей.
- первая аксиома: неотрицательность очевидна, равенство метрики в обратную сторону очевидно, в прямую хз TODO
- вторая аксиома: еще очевиднее
- третья аксиома: рассмотрим . Так как выпукла вверх, , то есть все три аксиомы выполняются. TODO: ШТО? Почему?(
- Сходимость в этой метрике эквивалентна покоординатной (TODO: почему?).
. Превращение в МП должно быть связано с желаемой операцией предельного перехода. В случае конечномерного пространства сходимость совпадает с покоординатной сходимостью, хотим того же самого для бесконечномерного. . TODO: к чему это? Введем метрику: . Проверим, что эта метрика удовлетворяет аксиомам: