Машинное обучение
Версия от 00:34, 19 января 2019; Evaleria (обсуждение | вклад)
Содержание
Общие понятия
Классификация
Регрессия
Кластеризация
Ансамбли
Глубокое обучение
- Глубокое обучение
- Настройка глубокой сети
- Batch-normalization
- Практики реализации нейронных сетей
- Сверточные нейронные сети
- Generative Adversarial Nets (GAN)
Обучение с подкреплением
Примеры кода
В разработке
- Общие понятия
- Мета-обучение
- Оценка качества в задачах классификации и регрессии
- Линейная регрессия
- Логистическая регрессия
- Стохастический градиентный спуск
- Рекуррентные нейронные сети
- Задача нахождения объектов на изображении
- Neural Style Transfer
- LSTM
- Метод опорных векторов (SVM)
- Дерево решений и случайный лес
- Байесовская классификация
- EM-алгоритм
- Ранжирование
- Рекомендательные системы
- Настройка гиперпараметров
- Уменьшение размерности
- Активное обучение
- Примеры кода на R
- Примеры кода на Java
- Обзор библиотек для машинного обучения на Python