Машинное обучение
Версия от 22:59, 18 апреля 2019; Evaleria (обсуждение | вклад)
Содержание
Общие понятия
- Общие понятия
- Модель алгоритма и ее выбор
- Переобучение
- Кросс-валидация
- Выброс
- Ранжирование
- Стохастический градиентный спуск
- Известные наборы данных
- Обучение с частичным привлечением учителя
Классификация и регрессия
- Метрический классификатор и метод ближайших соседей
- Дерево решений и случайный лес
- Вариации регрессии
- Линейная регрессия
- Логистическая регрессия
- Метод опорных векторов (SVM)
- Ядра
- Байесовская классификация
- Байесовские сети
- Поиск ближайших соседей с помощью иерархического маленького мира
Кластеризация
- Кластеризация
- Иерархическая кластеризация
- Оценка качества в задаче кластеризации
- Эволюционные алгоритмы кластеризации
Ансамбли
Нейронные сети
Глубокое обучение
- Глубокое обучение
- Настройка глубокой сети
- Batch-normalization
- Рекуррентные нейронные сети
- Долгая краткосрочная память
- Сегментация изображений
Сверточные сети
Порождающие модели
Обработка естественного языка
- Распознавание речи
- Обработка естественного языка
- Векторное представление слов
- Классификация текстов и анализ тональности