Метод двоичного подъёма
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Метод двоичного подъёма — один из самых простых методов для решения задачи LCA в online. Он не использует метод решения задачи RMQ и основан на методе динамического программирования.
Содержание
Описание алгоритма
Как и большинство on-line алгоритмов для решения задачи LCA, этот метод делает сначала препроцессинг, чтобы потом отвечать на запросы.
Препроцессинг
Препроцессинг заключается в том, чтобы посчитать функцию:
— номер вершины, в которую мы придём если пройдём из вершины вверх по подвешенному дереву шагов, причём если мы пришли в корень, то мы там и останемся. Для этого сначала обойдем дерево в глубину, и для каждой вершины запишем номер её родителя и глубину вершины в подвешенном дереве . Если — корень, то . Тогда для функции есть рекуррентная формула:
Для того чтобы отвечать на запросы нам нужны будут только те значения
, где , ведь при больших значение будет номером корня.Всего состояний динамики
, где — это количество вершин в дереве. Каждое состояние считается за . Поэтому суммарная сложность времени и памяти препроцессинга — .Ответы на запросы
Ответы на запросы будут происходить за время
. Для ответа на запрос заметим сначала, что если , для некоторых и , то . Поэтому если , то пройдём от вершины на шагов вверх, это и будет новое значение и это можно сделать за . Можно записать число в двоичной системе, это представление этого число в виде суммы степеней двоек, и для всех пройти вверх последовательно из вершины в .Дальше считаем, что
.Если
, то ответ на запрос .А если
, то найдём такие вершины и , такие что , — предок , — предок и . Тогда ответом на запрос будет .Научимся находить эти вершины
и . Для этого сначала инициализируем и . Дальше на каждом шаге находим такое максимальное , что . И проходим из вершин и на шагов вверх. Если такого найти нельзя, то значения и , это те самые вершины, которые нам требуется найти, ведь .Оценим время работы. Заметим, что найденные
строго убывают. Во-первых, потому что мы находим на каждом шаге максимальное значение , а во-вторых, два раза подряд мы одно и то же получить не можем, так как тогда получилось бы, что можно пройти шагов, а значит вместо первого , мы бы нашли . А, значит, всего значений , их можно перебирать в порядке убывания. Сложность ответа на запрос .Псевдокод
function preprocess(): int[] p = dfs(0) for i = 1 to n dp[i][0] = p[i] for j = 1 to log(n) for i = 1 to n dp[i][j] = dp[dp[i][j - 1]][j - 1] int lca(int v, int u): if d[v] > d[u] swap(v, u) for i = log(n) downto 0 if d[dp[u][i]] - d[v] >= 0 u = dp[u][i] if v == u return v for i = log(n) downto 0 if dp[v][i] != dp[u][i] v = dp[v][i] u = dp[u][i] return p[v]