Предикат "левый поворот"
Даны два отрезка, которые задаются начальной и конечной точками
и определяются как множества точек . Требуется проверить существование множества их общих точек. Для определения этого факта в вычислительной геометрии используется предикат левый поворот (или по часовой стрелке). Рассмотрим возможные расположения точек и самих отрезков относительно друг друга:Определим, лежат ли точки концов отрезков по разные стороны от другого отрезка.
Определение: |
Распишем подробнее:
Какие при этом у нас будут погрешности? Допустим, что все числа положительные и будем писать без модулей:
Замечание: при сложении складываются абсолютные погрешности, при умножении складываются относительные погрешности.
Именно поэтому, когда угол между отрезками АВ и АС крайне мал, мы можем получить неверное значение предиката.
Заметим, что все координаты (а, значит, и наши вычисления) производятся в вещественных числах, а это значит, что при вычислениях мы можем допустить ошибку. Распишем вещественное исчисление:
;
Получим некую окрестность
судя по которой мы сможем точнее определить, не ошиблись ли мы знаком(если ноль не входит в нашу окрестность, тогда знак верен, иначе "we need go deeper")Найдем более точно нашу окрестность:
Далее для пущей точности добавим floating point ariphmetics:
Замаксимизируем первый множитель:
Замечание: последнее неравенство верно, т.к.
Таким образом мы получили радиус нашей окрестности adaptive precision arithmetic, либо интервальная арифметика. Во второй, исходные переменные будут вырожденными интервалами. Из-за погрешностей, возникающих при округлении вещественных чисел, истинные значения операций нам будут неизвестны, но они обязательно будет содержаться в посчитанных интервалах.
, если же ноль таки попал в наш интервал, то приходится пользоваться более тяжелой артиллерией, такими какBounding box
Ещё следует обратить внимание на граничные случаи, когда какие-то точки попадают на саму прямую. При этом возникает единственный особый случай, когда вышеописанные проверки ничего не дадут — случай, когда оба отрезка лежат на одной прямой. Этот случай рассматривается отдельно. Для этого достаточно проверить, что проекции этих двух отрезков на оси X и Y пересекаются (часто эту проверку называют проверкой на bounding box).