Подгруппа
Версия от 22:36, 1 июля 2010; 192.168.0.2 (обсуждение)
Эта статья требует доработки!
- Необходимо привести примеры групп и их подгрупп (примеров надо несколько, так как подгруппа это очень важное понятие). (исправленно)
- Так же сюда, видимо, стоит перенести статью про нормальные подгруппы и тут же привести примеры нормальных и не нормальных подгрупп.
Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).
Определение: |
Если непустое подмножество группы оказывается замкнутым относительно групповой операции и операции взятия обратного элемента, то образует группу и называется подгруппой группы :
| элементов
Примеры
- Подмножество является подгруппой в для любого относительно операции сложения.
- Группа , является подгруппой в .
Свойства
Нормальные подгруппы
Определение: |
Подгруппа группы называется нормальной подгруппой, если для любых выполнено . Т.е.: |
Примеры
- примером нормальной подгруппы могут служить любая подгруппа любой абелевой группы
- примером не нормальной подгруппы может служить подгруппа p , всех перестановок группы X