Эта статья находится в разработке!
Определение: |
Для некоторого множества [math]X[/math], отображение [math] \rho : X \times X \rightarrow \mathbb{R^+} [/math] — называется метрикой на [math]X[/math], если выполняются аксиомы
- [math] \rho (x, y) \ge 0 ;\ \rho (x, y) = 0 \iff x = y [/math]
- [math] \rho (x, y) = \rho (y, x) [/math]
- [math] \rho (x, y) \le \rho (x, z) + \rho (z, y) [/math] — неравенство треугольника
Пару [math](X, \rho)[/math] называют метрическим пространством. |
Определение: |
Последовательность [math]x_n[/math] сходится к [math]x[/math] в МП [math](X, \rho)[/math] (записывают [math] x = \lim\limits_{n \to \infty} x_n[/math]), если [math] \rho(x_n, x) \xrightarrow[n \to \infty]{} 0[/math] |
Некоторые примеры метрических пространств:
- [math]X = \mathbb{R}, \rho(x, y) = | x - y |[/math]
- [math]X = \mathbb{R}^n, \rho(\overline x, \overline y) = \sqrt{\sum\limits_{i=1}^n (x_i - y_i)^2}[/math]
- [math]X = \mathbb{R}^{\infty}[/math]. Превращение в МП должно быть связано с желаемой операцией предельного перехода. В случае конечномерного пространства сходимость совпадает с покоординатной сходимостью, хотим того же самого для бесконечномерного. Введем метрику: [math]\rho(\overline x, \overline y) = \sum\limits_{n = 1}^{\infty} {1 \over 2^n}{|x_n - y_n| \over 1 + |x_n - y_n|}[/math] (стандартный способ превратить в метрическое пространство счетное произведение метрических пространств, коим и является [math]R^{\infty}[/math]). Проверим, что эта метрика удовлетворяет аксиомам:
- этот ряд всегда сходящийся, так как мажорируется убывающей геометрической прогрессией [math]\sum\limits_{n=1}^{\infty} {1 \over 2^n} = 1[/math], соответственно, расстояние ограничено единицей.
- первая аксиома: неотрицательность очевидна, равенство метрики нулю в обе стороны очевидно
- вторая аксиома: еще очевиднее
- третья аксиома легко вытекает из следующего утверждения:
Утверждение: |
[math] {|x - z| \over 1 + |x - z|} \le {|x - y| \over 1 + |x - y|} + {|y - z| \over 1 + |y - z|}[/math] |
[math]\triangleright[/math] |
Рассмотрим [math]f(t) = {t \over 1 + t}[/math].
- [math] f(t) [/math] возрастает при [math] t \in (-1, \infty) [/math], поэтому, если [math] -1 \lt t_1 \lt t_2 [/math], [math] f(t_1) \lt f(t_2) [/math].
- [math]f[/math] выпукла вверх на том же промежутке
Так как [math] |x - z| \le |x - y| + |y - z| [/math] по свойствам [math] | \cdot | [/math] и [math]f[/math] возрастает, то [math] f(|x - z|) \le f(|x - y| + |y - z|)[/math]. Из свойств модуля непрерывности имеем [math]f(t_1 + t_2) \le f(t_1) + f(t_2)[/math], тогда [math]f(|x - y| + |y - z|) \le f(|x - y|) + f(|y - z|) [/math], то есть получили [math]f(|x - z|) \le f(|x - y|) + f(|y - z|)[/math]. |
[math]\triangleleft[/math] |
Утверждение: |
Сходимость в метрике [math] \mathbb{R}^{\infty} [/math] эквивалентна покоординатной. |
[math]\triangleright[/math] |
Пусть [math] x^{(n)} = (x^{(n)}_1, \dots, x^{(n)}_k, \dots), x = (x_1, \dots, x_k, \dots) [/math]. Покажем, что [math] x^{(n)} \to x \iff \forall k: x^{(n)}_k \to x_k [/math].
В прямую сторону: [math] f(|x^{(n)}_k - x_k|) \le 2^k \rho(x^{(n)}, x) [/math]. Пусть [math] \rho(x^{(n)}, x) \lt {\varepsilon \over 2^k} [/math]. Тогда [math] f(|x^{(n)}_k - x_k|) \le \varepsilon [/math]. Так как [math] t = {1 \over 1 - f(t)} - 1 [/math], то [math] t \to 0 [/math], когда [math] f(t) \to 0 [/math], а значит, покоординатная сходимость выполняется.
В обратную сторону: подберем такое [math] k_0 [/math], чтобы [math] {\sum\limits_{k = k_0 + 1}^{\infty} {1 \over 2^k}} \lt \varepsilon [/math]. Возьмем [math] n_0 [/math] таким, чтобы [math] \forall k \le k_0, n \gt n_0: |x^{(n)}_k - x_k| \lt \varepsilon [/math]. Тогда [math] \rho(x^{(n)}, x) \lt \sum\limits_{k = 1}^{k_0} {\varepsilon \over 2^k} + \varepsilon \lt 2 \varepsilon [/math]. Устремляя [math] \varepsilon [/math] к нулю, получаем необходимое. |
[math]\triangleleft[/math] |
- В любом пространстве [math]X[/math] можно ввести дискретную метрику: [math]\rho(x, y) = \begin{cases} 0; & x = y \\ 1; & x \ne y \end{cases}[/math]. Заметим, что в дискретной метрике сходятся только стационарные последовательности.
- [math]X = \mathbb{R}^{\mathbb{I}}[/math], то есть множество всех функций из [math][0; 1][/math] в [math]\mathbb{R}[/math]. Это пространство не метризуется, то есть не существует метрики, в которой сходимость эквивалентна поточечной [1].
Центральную роль в изучении МП играют шары:
Определение: |
Открытым шаром в МП [math](X, \rho)[/math] с радиусом [math]r[/math] и центром в [math]a[/math] называют множество [math]V_r(a) = \{ x \mid \rho(x, a) \lt r \} [/math]. В определении замкнутого шара знак [math]\lt [/math] заменяется на [math]\le[/math]. |
На базе этих множеств можно МП превратить в ТП.
Определение: |
Для некоторого множества [math]X[/math], класс множеств [math]\tau[/math] называется топологией, если:
- [math] X, \emptyset \in \tau[/math]
- Любое объединение (возможно, несчетное) [math]\bigcup\limits_{\alpha} G_{\alpha}[/math] из [math]\tau[/math] принадлежит [math]\tau[/math]
- Любое конечное пересечение [math]\bigcap\limits_{i=1}^{n} G_i[/math] из [math]\tau[/math] принадлежит [math]\tau[/math]
Пару [math](X, \tau)[/math] называют топологическим пространством. Множества, принадлежащие [math]\tau[/math] называются открытыми. (по Хаусдорфу ???). Замкнутыми называются множества-дополнения к множествам из [math]\tau[/math]. |
Определение: |
Рассмотрим множество [math]A \subset X[/math].
Внутренностью (interior) множества [math]A[/math] называется множество [math]\mathrm{Int} A = \bigcup\limits_{G \subset A} G[/math], где [math] G [/math] — открытые множества.
Замыкание (closure) множества [math]A[/math] называется множество [math]\mathrm{Cl} A = \bigcap\limits_{A \subset F } F[/math], где [math] F [/math] — замкнутые множества.
Границей (boundary, frontier) множества [math]A[/math] называется множество [math]\mathrm{Fr} A = \mathrm{Cl} A \setminus \mathrm{Int} A[/math]. |
Определение: |
Точка [math]x[/math] называется пределом последовательности [math]x_n[/math] в топологическом пространстве [math](X, \tau)[/math], если [math]\forall G \ni x \exists N \forall n \gt N: x_n \in G[/math], то есть любое открытое множество, содержащее предел, также содержит все точки последовательности кроме конечного числа. |
Определение: |
Множество [math]U[/math] называет окрестностью в ТП, если существует открытое [math]G[/math]: [math]x \in G \subset U[/math]. |
Определение: |
Отображение [math]f: (X, \tau_1) \to (Y, \tau_2)[/math] называют непрерывным в точке [math]x \in X[/math], если для любой окрестности [math]U_{f(x)}[/math] существует окрестность [math]U_x[/math]: [math]f(U_x) \subset U_{f(x)}[/math]. |
Характеристика непрерывных отображений ТП: [math]f[/math] непрерывно тогда и только тогда, когда для любого [math]G' \in \tau_2: f^{-1}(G') \in \tau_1[/math], то есть прообраз любого открытого множества также открыт. (TODO: в конспекте только в прямую сторону, но вообще вроде это критерий. Док-во есть в Колмогорове, элементы теории функции и функана, 6 издание, страница 107)
Для любого МП [math](X, \rho)[/math] можно ввести метрическую топологию выделим в семейство открытых множеств [math]\tau[/math] множества, являющимися объединениями любого (возможно, несчетного) числа открытых шаров. Покажем, что это удовлетворяет аксиомам ТП:
- Очевидно (видимо, [math]X = \bigcup\limits_{i=1}^{\infty}U_i(x)[/math], где [math]x[/math] — любая точка [math]X[/math] если оно непустое, а если пустое, то просто не будем брать ни одного множества)
- Очевидно (если считать очевидным факт, что несчетное объединение несчетных множеств есть несчетное множество. Понятно, что счетным оно быть не может, но неясно как выб)
- Докажем для пересечения двух, дальше по индукции:
- [math]G_1 \bigcap G_2 = (\bigcup\limits_{\alpha} V') \bigcap (\bigcup\limits_{\beta} V'') = \bigcup\limits_{\alpha, \beta} (V' \bigcap V'')[/math]. (То, что так можно сделать, доказывается включением в обе стороны)
- Рассмотрим [math]V' \bigcap V''[/math]: [math]\forall x \in V' \bigcap V'' \exists V(x) \subset V' \bigcap V''[/math] (раньше когда-то доказывали), тогда [math]V' \bigcap V'' = \bigcup\limits_{x \in V' \cap V''} V(x)[/math]
В данном случае открытые множества были получены объединением открытых шаров — множеств более узкого класса. Это один из общих приемов превращения произвольного пространства в топологическое, открытые шары здесь — база топологии.
Определение: |
Базой топологии называют... TODO пщщ в конспекте какая-то хрень, кажется нет определения и только одно из двух свойство. |
Утверждение: |
[math]\mathrm{Cl} A = \{ x \mid \rho(x, A) = 0 \}[/math], где [math]\rho(x, A) = \inf\limits_{a \in A} \rho(x, y)[/math]. |
[math]\triangleright[/math] |
TODO: какое-то странное вспомогательное утверждение про непрерывность
TODO: ааа, ниче не понятно. Кажется, доказательство через включение в обе стороны. |
[math]\triangleleft[/math] |
Замечание: заметим, что в общем случае в топологических пространствах замыкания не определяются через предел последовательности, в этом смысле метрические пространства удобны.
Метрические пространства удовлетворяют свойству нормальности:
Утверждение (нормальность МП): |
Любое МП - нормальное, то есть любые два непересекающихся замкнутых подмножества имеют непересекающиеся окрестности. |
[math]\triangleright[/math] |
(скопировано из первого курса, в Колмогорове на странице 112 есть доказательство поприятнее и поинтуитивнее)
[math] f(x) = \frac {\rho(x, F_1)} {\rho(x, F_1) + \rho(x, F_2)} [/math]. Т.к. [math] F_1 \cap F_2 = \varnothing [/math] и [math] F_1, F_2 [/math] - замкнуты, то знаменатель не равен 0. Следовательно, [math] f(x) [/math] корректна и непрерывна в силу непрерывности [math] \rho [/math]. При этом: [math] x \in F_1 \Rightarrow f(x) = 0; x \in F_2: f(x) = 1 [/math]. Рассмотрим на R пару интервалов: [math] (- \infty; \frac 1 3) [/math] и [math] (\frac 1 2, + \infty) [/math]. Т.к. [math] f(x) [/math] неперывна, то прообраз открытого множества - открытое множество (это другое определение непрерывного отображения, оно почти эквивалентно тому, которое было дано ранее).
- [math] G_1 = f^{-1} ( - \infty; \frac 1 3); G_2 = f^{-1}(\frac 1 2, + \infty) [/math]
- [math] F_1 \in G_1; F_2 \in G_2; G_1 \cap G_2 = \varnothing [/math], ч.т.д.
|
[math]\triangleleft[/math] |
Следствие: так как одноточечные подмножества в МП являются замкнутыми, МП удовлетворяют аксиоме отделимости Хаусдорфа: любые две различные точки можно отделить открытыми шарами. (TODO: вообще в аксиоме говорится про окрестности, а не шары, важно ли это?)
Определение: |
МП [math](X, \rho)[/math] называется полным, если в нем любая сходящаяся в себе последовательность сходится. |
Утверждение (принцип вложенных шаров): |
Пусть [math](X, \rho)[/math] — полное. [math]\overline V_n[/math] — замкнутые шары. [math]\overline V_{n + 1} \subset \overline V_n[/math], [math]r_n \to 0[/math]. Тогда [math]\bigcap\limits_{n=1}^{\infty} \overline V_n \ne \emptyset[/math], и является точкой. |
[math]\triangleright[/math] |
Пусть [math]a_n[/math] — центр соответствующего шара, тогда из вложенности [math]\forall m \gt n: \rho(a_n, a_m) \lt r_n[/math], то есть последовательность центров сходится в себе, так как [math]r_n \to 0[/math]. Тогда по полноте последовательность центров сходится к [math]a[/math], множество [math]\{a\}[/math] и есть искомое перечечение.
TODO: интересно, а почему важна замкнутость? |
[math]\triangleleft[/math] |
Определение: |
[math]A[/math] всюду плотно в [math](X, \rho)[/math], если [math]\mathrm{Cl} A = X[/math]
- Например, [math]\mathbb{Q}[/math] всюду плотно в [math]\mathbb{R}[/math], так как [math]\mathrm{Cl} \mathbb{Q} = \mathbb{R}[/math] (TODO:ох, что бы это значило. Видимо, что множество действительных чисел строится включением пределов последовательностей рациональных.)
Если всюду плотное множество счетно, то пространство называют сепарабельным.
[math]A[/math] нигде не плотно в [math](X, \rho)[/math], если [math]\mathrm{Int} \mathrm{Cl} A = \emptyset[/math]. В смысле метрических пространств это значит, что в любом шаре есть шар, не содержащий точек [math]A[/math].
- Например, [math]\mathbb{Z}[/math] нигде не плотно в [math]\mathbb{R}[/math].
|
Определение: |
Подмножество [math]A[/math] топологического пространства [math]X[/math] имеет I категорию по Бэру в пространстве [math]X[/math] если оно является не более чем счетным объединением нигде не плотных в [math]X[/math] множеств. В противном случае оно имеет II категорию по Бэру. |
Теорема (Бэр): |
Полное МП является множеством II категории в себе. |
Доказательство: |
[math]\triangleright[/math] |
Пусть [math]X[/math] — полное и является множеством I категории, то есть представимо как [math]\bigcup\limits_{n=1}^{\infty} M_n[/math], где [math]M_n[/math] — нигде не плотно в [math]X[/math]. Возьмем замкнутый шар [math]\overline V_0[/math], например, радиуса 1. Как как [math]M_1[/math] нигде не плотно в [math]X[/math], оно также нигде не плотно в [math]\overline V_0[/math], а, значит, существует замкнутый шар [math]\overline V_1[/math] радиуса меньше [math]1 \over 2[/math], содержащийся в [math]\overline V_0[/math] и не пересекающийся с [math]M_1[/math] ([math]M_1 \cap \overline V_1 = \emptyset[/math]). Аналогично, [math]M_2[/math] нигде не плотно в [math]\overline V_1[/math], и так далее действуя таким образом, построим систему вложенных замкнутых шаров ([math]\overline V_{n+1} \subset \overline V_n[/math]) со стремящимся к нулю радиусом. В силу теоремы о вложенных шарах пересечение этих шаров должно содержать какую-то точку [math]x[/math], но эта точка не может лежать ни в одном из множеств [math]M_n[/math] по построению, то есть получили противоречие и [math]X[/math] не является множеством первой категории. |
[math]\triangleleft[/math] |
Утверждение (следствие из т. Бэра): |
Полное МП без изолированных точек несчетно. |
[math]\triangleright[/math] |
Пусть [math](X, \rho)[/math] — МП без изолированных точек (то есть в любой окрестности любой точки найдутся точки, отличные от нее). Пусть [math]X[/math] — счетно, то есть можно занумеровать его элементы как [math]\{ x_1 \dots x_n \dots \}[/math] и представить [math]X[/math] как [math]\bigcup\limits_{n=1}^{\infty} \{ x_n \}[/math]. Но одноточечные множества нигде не плотны в [math]X[/math], тогда оно является множеством I категории, что противоречит теореме Бэра. Следовательно, [math]X[/math] должно быть несчетно. |
[math]\triangleleft[/math] |
Это следствие объясняет природу несчетности вещественной оси. (TODO: Што? Как?)
Определение: |
Замкнутое [math]K \subset X[/math] называют компактом, если из любой последовательности точек в [math]K[/math] можно выделить сходящуюся подпоследовательность. |
Определение: |
[math]A \subset X[/math] называют вполне ограниченным, если для него при любом [math]\varepsilon[/math] существует конечная [math]\varepsilon[/math]-сеть, то есть [math]\forall \varepsilon \gt 0 \exists x_1, x_2 \dots x_n: A \subset \bigcup\limits_{i=1}^n V_{\varepsilon}(x_i)[/math]. |
Теорема (Хаусдорф): |
В полном метрическом пространстве множество является компактом тогда и только тогда, когда оно замкнуто и вполне ограничено. |
Доказательство: |
[math]\triangleright[/math] |
на лекции не было, видимо, было на 1 курсе тут Теорема_Хаусдорфа_об_ε-сетях |
[math]\triangleleft[/math] |
Пример: [math]R^{\infty}[/math] — полное, так как метрика индуцирует покоординатную сходимость. TODO: пшшш какая-то хрень про диагональ Кантора.
Утверждение (компактность прямоугольника в R^infty): |
[math]\Pi = [a_1, b_1] \times \dots \times [a_n, b_n] \dots[/math] — компакт в [math]R^{\infty}[/math]. |
[math]\triangleright[/math] |
[math]\rho(\overline x, \overline y) = \sum\limits_{n=1}^{\infty} {1 \over 2^n} {|x_n - y_n| \over 1 + |x_n - y_n|}[/math], где [math]{|x_n - y_n| \over 1 + |x_n - y_n|} \le 1[/math], также [math]\forall \varepsilon \gt 0 \exists n_0: \sum\limits_{n = n_0 + 1}^{\infty} {1 \over 2^n} \lt \varepsilon[/math]. Таким образом, для каждого [math]\varepsilon[/math] можно выбрать номер координаты [math]n_0[/math], такой что все координаты с большими [math]n_0[/math] номерами суммарно влияют на метрику не больше, чем на [math]\varepsilon[/math].
Расмотрим [math]\Pi_{n_0} = [a_1, b_1] \times \dots \times [a_n, b_n] \subset R^{n_0}[/math] — для него можно составить конечную [math]\varepsilon[/math]-сеть [math]A[/math] (понятно что по каждой координате это сделать легко, а дальше возьмем декартово произведение). Сделаем сеть [math]A'[/math] для [math]\Pi[/math] следующим образом: к каждой [math]n_0[/math]-мерной точке из [math]A[/math] допишем произвольные координаты [math]x_{n_0 + 1}, x_{n_0 + 2} \dots[/math].
- По выбору [math]\varepsilon[/math]: [math]\forall x' \in \Pi \exists x \in \Pi_{n_0}: \rho (x', x) \lt \varepsilon[/math].
- По определению [math]\varepsilon[/math]-сети для [math]A[/math]: [math]\forall \varepsilon \gt 0 \forall x \in \Pi_{n_0} \exists a \in A: \rho(x, a) \lt \varepsilon[/math].
- По построению [math]A'[/math] и выбору [math]\varepsilon[/math], [math]\forall a \in A \exists a' \in A': \rho(a, a') \lt \varepsilon[/math].
Таким образом, [math]\forall \varepsilon \gt 0 \forall x' \in \Pi \exists a' \in A': \rho(x', a') \le \rho(x', x) + \rho(x, a) + \rho(a, a') \le 3 \varepsilon[/math], то есть построили конечную [math]3\varepsilon[/math]-сеть. |
[math]\triangleleft[/math] |
TODO: пшшш какая-то хрень про сигма-алгебры. Короче, вводится метрика [math]\rho(f, g) = \int\limits_E {|f - g| \over 1 + |f - g|} d \mu[/math], в такой метрике сходимость равносильна сходимости по мере.
- ↑ Кому интересно: метрическое пространство удовлетворяет первой аксиоме счетности, а она не может выполняться в [math]X = \mathbb{I}^{\mathbb{I}}[/math], которое понятно как сводится к [math]X = \mathbb{R}^{\mathbb{I}}[/math]: Why is [math][0,1]^{[0,1]}[/math] not first countable?
Всякие ссылочки по теме: