Квантовые конечные автоматы
Неформально говоря квантовый конечный автомат — это квантовый аналог конечного автомата, который использует квантовые гейты. Такие автоматы позволяют допускать некотые языки, имея при этом экспоненциально меньший размер, чем обычные автоматы.
Определение
Определение: |
Квантовый конечный автомат (ККА) (англ. Quantum finite automata, QFA) — это кортеж :
| , где
Кроме того, ККА является частным случаем Геометрического конечного автомата и Топологического конечного автомата[1].
Принцип работы
- На вход подается строчка .
- На выходе мы получаем число , являющееся вероятностью данного конечного автомата быть в допускающем состоянии.
Описание
Для первоначального описание ККА воспользуемся следующим примером. Пусть есть графовым представлением ДКА и пусть в нем вершин, и все вершины пронумерованы. Тогда для представления такого графа можно воспользоваться набором матриц смежности таких, что каждая матрица размера и что каждому символу сопоставляется единственная матрица из этого набора. Каждая матрица состоит из и , причём означает переход из состояния в по символу , а — его отсутствие. В этом случае, текущее состояние автомата записывается как вектор, размерности , в котором будет лишь одна единица, обозначающая текущее положение состояния. При помощи такого описания можно легко делать переходы из нынешнего состояние в новое состояние по символу обыкновенным умножением матриц.
Пусть у нас есть ДКА с
вершинами и его . Тогда по описанному определению можно составить матрицы смежности размерности . Также введем -размерный вектор , описывающий состояние ДКА, a — начальное состояние автомата. Тогда для перехода из состояния в по строчке нужно воспользоваться правилом умножения матриц из линейной алгебры :Описанное выше по сути и является ККА, но в [2] такие, что , a матрицы — унитарные матрицы, причем такие матрицы могут не только состоять из и , но и состоять из комплексных чисел. Для ККА характерна геометрическая интерпретация в пространстве . С этой стороны вектор является точкой, a — операторы эволюции в представлении Шредингера [3].
записываются амплитуды вероятностейКроме того, можно упомянуть несколько особенностей ККА:
- НКА. Из-за свойства НКА в векторе алгоритм Томпсона, то построенные на их основе Квантовые конечные автоматы не будут эквивалентны. Эта проблема является одной из научно-исследовательских задач в теории ККА. и в столбцах матриц может находиться несколько . Если в этом случаи рассмотреть
- Вероятностный конечный автомат. Для его построения нужно всего лишь в ККА использовать стохастические матрицы[4] для и вектор вероятностей состояний для . Одно из свойств — сумма всех элементов равна , и для того, чтобы во всех переходах сохранялось это свойство, и нужны стохастические матрицы.
- Марковская цепь. При вводе строчек марковской цепи[5]. при больших одномерный ККА может быть эквивалентен
Одномерный квантовый конечный автомат
Авторы одномерного (англ. Measure-one) ККА — Cris Moore и James P. Crutchfield (2000). Главное свойство одномерного ККА — допускать регулярный язык. Автомат такого типа с состояниями представляется в виде кубита c состояниями.
- .
Такой кубит приносит в пространство метрику Фубини-Штуди[6] . Матрицы смежности остаются унитарными, а переход в новое сосояние по символу :
- .
Переход в допускающее состояние производится матрицей-проектором[7] .
Вероятность
, где равна :Многомерный квантовый конечный автомат
Определение: |
Многомерный квантовый конечный автомат (англ. Measure-many QFA) — это кортеж :
| , где
Многомерный ККА был введен Attila Kondacs и John Watrous в 1997. Его главное свойство, а и одномерный — допускать регулярный язык.
Принципы многомерного ККА очень схожи с одномерным, за исключением измерения вероятности после каждой итерации символа строки вместо измерения после полного ввода строчку у одномерного ККА. Для формального определения понадобится гильбертово пространство. Пусть у нас есть гильбертово пространство :
, где — допускающее пр-во , — отвергающее пр-во , — промежуточное пр-во. Для каждого пр-ва существует набор базисных ординальных векторов соответственно :
- [8] , где — линейная оболочка
Так же в многомерном ККА присутствуют 3 матрицы-проектора :
, и для каждого гильбертово пр-ва :Переход в новое состояние кубита остается таким же, но после каждого перехода кубит коллпасирует в одно из трёх гильбертовых пр-в
. Для того чтобы определить вероятность автомата находиться в допускающем состоянии нужно :- , где — входная строчка
См. также
Примечания
Источники информации
- Andris Ambainis, QUANTUM FINITE AUTOMATA
- Wikipedia — Quantum finite automata