Материал из Викиконспекты
Пусть графы [math]G_1[/math] и [math]G_2[/math] имеют непересекающиеся множества вершин [math]V_1[/math] и [math]V_2[/math] и непересекающиеся множества ребер [math]X_1[/math] и [math]X2[/math].
Объединение
Определение: |
Объединением (англ. union) [math]G_1 \cup G_2[/math] называется граф, множеством вершин которого является [math]V=V_1 \cup V_2[/math], а множество ребер [math]X=X_1 \cup X_2[/math]. |
Соединение
Определение: |
Соединением (англ. graph join) [math]G_1 + G_2[/math] называется граф, который состоит из [math]G_1 \cup G_2[/math] и всех ребер, соединяющих [math]V_1[/math] и [math]V_2[/math]. |
Произведение
Определение: |
Произведением (англ. cartesian product) [math]G_1 \times G_2[/math] называется граф с множеством вершин [math]V[/math] равным декартовому произведению [math]V_1 \times V_2[/math]. Множество ребер [math]X[/math] определяется следующим образом:
- рассмотрим любые две вершины [math]u=(u_1, u_2)[/math] и [math]v=(v_1, v_2)[/math] из [math]V=V_1 \times V_2[/math],
- вершины [math]u[/math] и [math]v[/math] смежны в [math]G=G_1 + G_2[/math] тогда и только тогда, когда ([math]u_1 = v_1[/math], а [math]u_2[/math] и [math]v_2[/math] — смежные) или ([math]u_2 = v_2[/math], а [math]u_1[/math] и [math]v_1[/math] — смежные).
|
Композиция
Определение: |
Композицией (англ. lexicographical product) [math]G_1[G_2][/math] называется граф с множеством вершин [math]V[/math] равным декартовому произведению [math]V_1 \times V_2[/math]. Множество ребер [math]X[/math] определяется следующим образом:
- так же рассмотрим любые две вершины [math]u=(u_1, u_2)[/math] и [math]v=(v_1, v_2)[/math] из [math]V=V_1 \times V_2[/math],
- вершины [math]u[/math] и [math]v[/math] смежны в [math]G=G_1 + G_2[/math] тогда и только тогда, когда ([math]u_1[/math] и [math]v_1[/math] — смежные) или ([math]u_1 = v_1[/math], а [math]u_2[/math] и [math]v_2[/math] — смежные).
|
Лемма (о произведении регулярных графов): |
[math]G_1[/math] и [math]G_2[/math] — регулярные графы. Тогда [math]G = G_1 \times G_2[/math] — регулярный граф. |
Доказательство: |
[math]\triangleright[/math] |
Пусть степень графов [math]G_1[/math] и [math]G_2[/math] будут [math]k_1[/math] и [math]k_2[/math] соответственно.
Рассмотрим любую вершину графа [math]G[/math]: у нее [math]k_1 + k_2[/math] смежных вершин. Значит граф [math]G[/math] регулярный. |
[math]\triangleleft[/math] |
Лемма (о композиции регулярных графов): |
[math]G_1[/math] и [math]G_2[/math] — регулярные графы. Тогда [math]G = G_1[G_2][/math] — регулярный граф. |
Доказательство: |
[math]\triangleright[/math] |
Пусть степень графов [math]G_1[/math] и [math]G_2[/math] будут [math]k_1[/math] и [math]k_2[/math] соответственно.
Рассмотрим любую вершину графа [math]G[/math]: у нее [math]|V_2| \cdot k_1 + k_2[/math] смежных вершин. Значит граф [math]G[/math] регулярный. |
[math]\triangleleft[/math] |
Лемма (о произведении двудольных графов): |
[math]G_1[/math] и [math]G_2[/math] — двудольные графы. Тогда [math]G = G_1 \times G_2[/math] — двудольный граф. |
Доказательство: |
[math]\triangleright[/math] |
Пусть цвет [math]у[/math] левых долей [math]G_1[/math] и [math]G_2[/math] будет <text>0</tex>, а правых [math]1\lt /text\gt .
А цвет каждой вершины \lt tex\gt v = (v_1, v_2)[/math] графа [math]G[/math] будет равен [math]c(v) = (c(v_1) + c(v_2)) \bmod 2[/math].
Рассмотрим любую пару смежных вершин [math]u = (u_1, u_2)[/math] и [math]v = (v_1, v_2)[/math] из графа [math]G[/math], два случая:
- [math]u_1 = v_1[/math], [math]u_2[/math] и [math]v_2[/math] — смежные, значит [math]c(u_1) = c(v_1)[/math] и [math]с(u_2) \ne c(v_2)[/math], из этого следует [math]c(u) \ne c(v)[/math],
- [math]u_2 = v_2[/math], [math]u_1[/math] и [math]v_1[/math] — смежные, аналогично следует [math]c(u) \ne c(v)[/math].
Следовательно каждое ребро графа [math]G[/math] соединяет вершины разного цвета, значит [math]G[/math] двудольный. |
[math]\triangleleft[/math] |
См. такжеИсточники информации
- Харари Ф. Теория графов / пер. с англ. — изд. 1-ое, с.35