Суммируемые функции произвольного знака
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Пусть f измерима на множестве E.
Напомним:
Интеграл распространяется так же:
Из измеримости следует, что и тоже будут измеримы. Также, они неотрицательны.
уже были определены нами ранее.
| Определение: |
| суммируема на , если на нём суммируемы и . В этом случае, . |
Заметим, что, по линейности . Тогда
Так как , то из суммируемости модуля вытекает суммируемость и .
Как следствие определения, получаем, что суммируема тогда и только тогда, когда суммируема. То есть, в теории Лебега нет условно сходящихся интегралов.
Пример: интеграл Дирихле равен по Риману, но по Лебегу он не суммируем.
Так как определен линейной формулой, то на суммируемые функции произвольного знака переносятся также -аддитивность и линейность интеграла. Достаточно их написать для и сложить.
Абсолютная непрерывность
| Теорема (Абсолютная непрерывность): |
Пусть — суммируема на . Тогда |
| Доказательство: |
|
, то есть, достаточно рассмотреть неотрицательные функции. — суммируема и неотрицательна. . По определению, для любого существует хорошее . Тогда , и по сигма-аддитивности, . (так как — хорошее). (так как f ограничена). ; . Итак : . Потребуем, чтобы . Тогда . Тогда получается, что для таких , если . Подставляем . |