Изменения

Перейти к: навигация, поиск

Покрытие рёбер графа путями

777 байт добавлено, 00:15, 14 октября 2010
Нет описания правки
==Покрытие ребер графа путями==
Следующее утверждение являются следствием из [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов|критерия Эйлеровости]] [[Основные определения теории графов|графа]]:
{{УтверждениеТеорема|statement=
Пусть <tex>G</tex> - [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов#cite_note-almost-0|почти связный]] граф, в котором <tex>2N</tex> вершин имеют нечетную [[Основные определения теории графов|степень]]. Тогда множество ребер <tex>G</tex> можно покрыть <tex>N</tex> реберно простыми путями.
|proof=
'''Необходимость'''<br/>
Докажем, что <tex>G</tex> можно покрыть <tex>N</tex> реберно-простыми цепями.<br/>
Добавим в <tex>G N</tex> ребер <tex>uv</tex> таки, что <tex>uv</tex> &notin; <tex>G</tex> и степени вершин <tex>u</tex> и <tex>v</tex> нечетные. Тогда степени всех вершин станут четными, и в <tex>G</tex> появится Эйлеров цикл <tex>c</tex>. Удалим из <tex>c</tex> добавленные ребра.<br/>
Тогда цикл <tex>c</tex> распадется на <tex>N</tex> путей, которым будут принадлежать все ребра <tex>G</tex>.
 
'''Достаточность'''
 
}}
105
правок

Навигация