Изменения
→Доказательство принадлежности к NPH
В качестве сертификата возьмем ориентированный гамильтонов цикл в графе <math>G</math>. Очевидно, он удовлетворяет всем требованиям, налагаемым на сертификат. Проверяющая функция строится очевидным образом, работает за полиномиальное от размера входа время.
===Доказательство принадлежности к NPH===
Доказательство взято из книги <ref>[http://www.ru "Введение в теорию автоматов, языков и вычислений", Дж. Хопкрофт, Р. Мотвани, Дж. Ульман]</ref>
Сведем задачу о выполнимости булевых формул вида 3-КНФ (3CNF SAT) к HAM. Начнем построение экземпляра HAM по булевой формуле в 3КНФ. Пусть формула имеет вид <math>E = e_1 \land e_2 \land... \land e_k</math>, где каждое <math>e_i</math> - дизъюнкт, представляющий собой сумму трех литералов, скажем, <math>e_i = (\alpha_{i1} + \alpha_{i2} + \alpha_{i3})</math>. Пусть <math>x_1, x_2, ..., x_n</math> - переменные в формуле <math>E</math>. Для всех дизъюнктов и переменных строятся подграфы, как показано на рисунке 1.
В дальнейшем это позволит нам считать, что выбор перехода из <math>a_{i}</math> в <math>b_{i0}</math> означает приписывание переменной <math>x_{i}</math> значения "истина", а перехода в <math>c_{i0}</math> - значения "ложь". Поэтому граф на рисунке 1б имеет <math>2^n</math> ориентированных гамильтоновых циклов, соответствующих <math>2^n</math> возможным подстановкам для <math>n</math> переменных.
Однако на рисунке 1б изображен лишь скелет графа, порождаемого по формуле <math>E</math>, находящейся в 3-КНФ. Каждому дизъюнкту <math>e_{i}</math> ставится в соответствие подграф <math>I_{j}</math> (рисунок 1в). Он обладает тем свойством, что если цикл входит в <math>r_{j}</math>, то должен выходить из <math>u_{j}</math>. Аналогично для <math>s, v</math> и <math>t, w</math> (доказательство этого утверждения см. в книге "Введение в теорию автоматов, языков и вычислений", Дж. ХопкрафтХопкрофт, Р. Мотвани, Дж. Ульман).
В завершение построения графа <math>G</math> для формулы <math>E</math> соединяем подграфы <math>I</math> и <math>H</math> следующим образом. Допустим, у дизъюнкта <math>e_i</math> первым литералом является <math>x_i</math>, переменная без отрицания. Выберем некоторый узел <math>c_{ip}</math>, где <math>p</math> от 0 до <math>m_{i}</math> - 1, ранее не использованный для соединения с подграфами <math>I</math>. Введем дуги, ведущие из <math>c_{ip}</math> в <math>r_{j}</math> и из <math>u_{j}</math> в <math>b_{i,p+1}</math>. Если же первым литералом дизъюнкта <math>e_j</math> является отрицание <math>\bar{x_i}</math>, то нужно отыскать неиспользованный узел <math>b_{ip}</math>, а затем соединить <math>b_{ip}</math> с <math>r_{j}</math> и <math>u_{j}</math> с <math>c_{i,p+1}</math>