18
правок
Изменения
Нет описания правки
| proof = Возьмем для доказательства следующее понятие:
Пусть <tex> A</tex> {{---}} некоторое событие. Назовем индикатором события <tex>A</tex> случайную величину <tex>I</tex>, равную единице если событие <tex>A</tex> произошло, и нулю в противном случае. По определению величина <tex>I(A)</tex> имеет [[Схема Бернулли|распределение Бернулли ]] с параметром:
:<tex> p = \mathbb P\mathrm (I(A) = 1) = \mathbb P\mathrm (A)</tex>,
и ее [[Математическое ожидание случайной величины| математическое ожидание]] равно вероятности успеха
{{Теорема
|id = thCheb
|about = Неравенство Чебышева
|statement =
| proof =
Отсюда заметим, что вероятность отклониться значению случайной величины от значения [[Математическое ожидание случайной величины| математического ожидания]] меньше чем <tex>\dfrac {1}{9}</tex>
}}