Изменения

Перейти к: навигация, поиск

Batch-normalization

106 байт добавлено, 17:22, 10 января 2019
Идея
==Идея==
[[Файл:covariate-shift1.png|600px|thumb|Рисунок 1. Верхние две строки роз показывают первое подмножество данных, а нижние две строки показывают другое подмножество данных. Данные подмножества имеют довольно различные распределения. На графиках показано распределение двух классов в пространстве объектов с использованием красных и зеленых точек. Синяя линия показывает границу между двумя классами.]]
Нормализация входного слоя обычно выполняется путем масштабирования данных, подаваемых в функции активации. Например, когда есть признаки со значениями от <tex>0 </tex> до <tex>1 </tex> и некоторые признаки со значениями от <tex>1 </tex> до <tex>1000</tex., то их необходимо нормализовать, чтобы ускорить обучение. То же самое можно сделать и для скрытых слоев нейронных сетей, что и делает нормализация батчей.
Нормализация батчей уменьшает величину, на которую смещаются значения узлов в скрытых слоях (т.н. '''смещение [[Ковариация случайных величин|ковариации]]''' (англ. covariance shift)). Проиллюстрируем смещение ковариации примером. Пусть, есть [[Глубокое обучение|глубокая нейронная сеть]], которая обучена определять находится ли на изображении роза. И нейронная сеть была обучена на изображении только красных роз. Теперь, если попытаться использовать обученную модель для обнаружения цветных роз, то, очевидно, результат будет неудовлетворительный. Обучающая и тестовая выборки содержат изображения роз, но немного отличаются. Другими словами, если модель обучена отображению из множества <tex>X</tex> в множество <tex>Y</tex> и если [[wikipedia:ru:Распределение_вероятностей|распределение]] элементов в <tex>X</tex> изменяется, то появляется необходимость обучить модель заново, чтобы "выровнять" распределение элементов в <tex>X</tex> и <tex>Y</tex>. Когда батчи содержат изображения, равномерно-распределенные на всем множестве, то смещение ковариации незначительно. Однако, когда батчи выбираются только из одного из двух подмножеств (в данном случае, красные розы и цветные розы), то смещение ковариации возрастает. Это довольно сильно замедляет процесс обучения модели. На Рисунке 1 изображена разница в распределениях.
210
правок

Навигация