1679
правок
Изменения
Нет описания правки
}}
TODO тут какая-то хурма про уравновешенность
{{Теорема
|about=характеристика векторной топологии
|statement=
$\tau$ — векторная топология на $X$ тогда и только тогда, когда:
# $\tau$ инвариантна относительно сдвигов: $\tau + x_0 = \tau$
# существует база из радиальных уравновешенных окрестностей нуля
# $\forall U(0) \exists U_1(0): U_1(0) + U_1(0) \subset U(0)$
|proof=
В прямую сторону:
# Рассмотрим отображение $x \mapsto x + x_0$, то есть сдвиг на $x_0$. Это отображение взаимно однозначно, следовательно непрерывно, то есть если $G \in \tau$ (открыто), $G + x_0$ также открыто. То есть получили, что векторная топология инвариантна относительно сдвигов.
# Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. $\lambda x \to 0, x \to 0, \lambda \to 0$, то есть $\forall U(0) \exists \delta > 0, W(0): |\lambda| \ge 0$(TODO тут вроде баг в конспекте) $x \in W(0) \Rightarrow \lambda x \in U(0) \Leftrightarrow \lambda W(0) \subset U(0) \Rightarrow \bigcup\limits_{|\lambda| < \delta} \lambda W(0) \subset U(0)$, где $\lambda W(0)$ — уравновешено и окрестность 0.
#: Для радиальности: $\forall x_0 \in X, \lambda \to 0, \lambda x_0 \to 0 x_0 = 0 \Rightarrow \forall U(0) \exists \delta > 0: |\lambda| < \delta, \lambda x_0 \in U(0)$. $x_0 \in {1 \over \lambda} U(0), |\lambda| \le \delta, \left| {1 \over \lambda} \right| \ge {1 \over \delta}$, то есть $U(0)$ поглощает $x_0$.
# $x + y \to 0, x, y \to 0 \forall U(0) \exists U_1(0) \Rightarrow U_1(0) + U_1(0) \subset U(0)$.
В обратную сторону, то есть если соблюдаются эти три свойства, в этой топологии линейные операции непрерывны:
Непрерывность сложения:
*: Вспомогательный факт: если $x \to x_0$, то $x - x_0 \to 0$, то есть $x$ представимо как $ x = x_0 + y, y \to 0$.
*: Если $x \to x_0, y \to y_0$. $x = x_0 + u, y = y_0 + v, u \to 0, v \to 0$. $x + y = (x_0 + y_0) + (u + v)$, где по свойствам предела $(u + v) \to 0$, что и требуется.
Непрерывность умножения:
*: TODO что-то длинное и страшное
}}
Любое НП является частным случаем ТВП. Обратное в общем случае неверно, в связи с чем возникает вопрос о том, в каком случае ТВП можно нормировать. Ответ на него дает понятие функционала Минковского.