Топологические векторные пространства

Материал из Викиконспекты
Перейти к: навигация, поиск
Эта статья находится в разработке!

Рассмотрим множество [math] f: [0, 1] \to \mathbb{R} [/math]. Множество таких функций образуют линейное пространство. Если определять предел в поточечном смысле, операции сложения и умножения на число в этом пространстве непрерывны. Мотивация введения топологических векторных пространств — обобщение этой ситуации на абстрактный случай.


Определение:
Топологическое векторное пространство — линейное пространство, наделенной такой топологией, что операции сложения векторов и умножения на скаляр в ней непрерывны в этой топологии, то есть:
  • непрерывность умножения на скаляр: [math] \alpha x \to \alpha_0 x_0 [/math], если [math] \alpha \to \alpha_0 [/math], [math] x \to x_0 [/math]. Означает, что для любой окрестности [math] U(\alpha_0 x_0) [/math] существует [math] \varepsilon \gt 0 [/math] и существует [math] U(x_0): |\alpha - \alpha_0| \lt \varepsilon, x \in U(x_0) \implies \alpha x \in U(\alpha_0 x_0) [/math]
  • непрерывность сложения векторов: [math] x + y \to x_0 + y_0 [/math], если [math] x \to x_0 [/math], [math] y \to y_0 [/math]. Означает, что для любой окрестности [math] U(x_0 + y_0) [/math] существуют окрестности [math] U(x_0), U(y_0): \forall x \in U(x_0) \forall y \in U(y_0) \implies x + y \in U(x_0 + y_0) [/math].


В ситуации [math] f: [0, 1] \to \mathbb{R} [/math], когда предел определен поточечно, если [math] \forall 0 \le t_1 \lt \dots \lt t_n \le 1, \forall \varepsilon_1 \dots \varepsilon_n \gt 0 [/math] рассмотреть [math] U_{t_1 \dots t_n} (\varepsilon_1 \dots \varepsilon _n) = \{ f \mid \forall j: |f(t_j)| \lt \varepsilon_j \} [/math], объявить их окрестностями нулевой функции — в такой базе окрестности нуля функции будут непрерывны и предел будет поточечным.

Как охарактеризовать векторную топологию? Пусть [math] X [/math] — линейное пространство, [math] A, B \subset X [/math], тогда определим

  • [math]A + B = \{ a + b \mid a \in A, b \in B\}[/math]
  • [math]\alpha A = \{ \alpha a \mid a \in A \}[/math]

Заметим, что [math] 2 A \subset A + A [/math], но обратное не верно. Например, в [math]X = \mathbb{R}[/math], [math] A = \{1, 3\}[/math]: [math]2A=\{2,6\}[/math], но [math]A+A=\{2,4,6\}[/math].


Определение:
[math] A [/math] закругленное/уравновешенное, если [math] \forall \lambda: |\lambda| \lt 1: \lambda A \subset A [/math].


Определение:
[math] A [/math] поглощает [math] B [/math], если [math] \exists \lambda_0 \gt 0: \forall \lambda: |\lambda| \gt \lambda_0: B \subset \lambda A [/math].


Определение:
[math] A [/math] радиальное/поглощающее, если оно поглощает любую конечную систему точек. Для проверки радиальности достаточно проверить поглощение каждой конкретной точки.


Определение:
[math] A [/math] выпуклое, если [math] \forall x, y \in A \forall 0 \le \alpha \le 1: \alpha x + (1 - \alpha) y \in A [/math], то есть множество содержит отрезок, соединяющий любые два его элемента.


Определение:
[math] A [/math] ограничено, если [math] \forall U(0)\ \exists \lambda \gt 0: A \subset \lambda U(0) [/math] (то есть, его поглощает любая окрестность нуля).


Существует стандартная конструкция, которая позволяет уравновесить любое множество.

Утверждение:
Пусть [math]A \subset X[/math] и [math]\varepsilon \gt 0[/math], и [math]A_{\varepsilon} = \bigcup\limits_{|\lambda| \leq \varepsilon} \lambda A[/math] Тогда [math]A_\varepsilon[/math] — уравновешенное.
[math]\triangleright[/math]

Пусть [math]|\mu| \lt 1[/math], проверим, что [math]\mu A_{\varepsilon} \subset A_{\varepsilon}[/math]:

[math]x \in \mu A_{\varepsilon}[/math]. [math]x = \mu y[/math]. [math]y \in A_{\varepsilon}[/math]. [math]y \in \lambda A[/math]. [math]|\lambda| \le \varepsilon[/math]

[math]y = \lambda z, z \in A[/math]. Тогда [math]x = (\mu \lambda) z[/math], но [math]|\mu \lambda| = |\mu||\lambda| \leq |\lambda| \leq \varepsilon[/math]

Тогда [math]x \in (\mu \lambda) A, |\mu \lambda| \leq \varepsilon[/math] и [math]x \in A_{\varepsilon}[/math], что и требовалось доказать.
[math]\triangleleft[/math]

Теорема о характеристике векторной топологии[править]

Теорема (характеристика векторной топологии):
[math] \tau [/math] — векторная топология на [math] X [/math] тогда и только тогда, когда:
  1. [math] \tau [/math] инвариантна относительно сдвигов: [math] \tau + x_0 = \tau [/math]
  2. существует база из радиальных уравновешенных окрестностей нуля
  3. [math] \forall U(0) \exists U_1(0): U_1(0) + U_1(0) \subset U(0) [/math]
Доказательство:
[math]\triangleright[/math]

В прямую сторону:

  1. Рассмотрим отображение [math] f, f(x + x_0) = x[/math], то есть, сдвиг на [math] x_0 [/math]. Это отображение взаимно однозначно и непрерывно (так как оно может быть определено через непрерывную по определению ТВП операцию сложения, [math]f(x) = x - x_0 [/math]). Прообраз открытого множества при непрерывном отображении открыт, то есть, если [math] G \in \tau [/math] (открыто), то [math] f^{-1}(G) = G + x_0 [/math] также открыто. Получили, что векторная топология инвариантна относительно сдвигов.
  2. Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. [math] \lambda x \to 0, x \to 0, \lambda \to 0 [/math], то есть [math] \forall U(0) \exists \delta \gt 0, W(0): |\lambda| \le \delta [/math] [math] x \in W(0) \implies \lambda x \in U(0) \iff \lambda W(0) \subset U(0) \implies \bigcup\limits_{|\lambda| \le \delta} \lambda W(0) \subset U(0) [/math], где [math] \lambda W(0) [/math] — уравновешено и окрестность 0.
    Для радиальности: [math] \forall x_0 \in X, \lambda \to 0, \lambda x_0 \to 0 x_0 = 0 \implies \forall U(0) \exists \delta \gt 0: |\lambda| \le \delta, \lambda x_0 \in U(0) [/math]. [math] x_0 \in {1 \over \lambda} U(0), |\lambda| \le \delta, \left| {1 \over \lambda} \right| \ge {1 \over \delta} [/math], то есть [math] U(0) [/math] поглощает [math] x_0 [/math].
  3. [math] x + y \to 0, x, y \to 0 \quad \forall U(0) \exists U_1(0) \implies U_1(0) + U_1(0) \subset U(0) [/math].

В обратную сторону, то есть если соблюдаются эти три свойства, в этой топологии линейные операции непрерывны:

Непрерывность сложения:

  • Вспомогательный факт: если [math] x \to x_0 [/math], то [math] x - x_0 \to 0 [/math], то есть [math] x [/math] представимо как [math] x = x_0 + y, y \to 0 [/math].
    Если [math] x \to x_0, y \to y_0 [/math]. [math] x = x_0 + u, y = y_0 + v, u \to 0, v \to 0 [/math]. [math] x + y = (x_0 + y_0) + (u + v) [/math], где по свойствам предела [math] (u + v) \to 0 [/math], что и требуется.

Непрерывность умножения: пусть [math] \lambda \to \lambda_0, x \to x_0 [/math], покажем что [math] \lambda x \to \lambda_0 x_0 [/math]. Пусть [math] \lambda = \lambda_0 + \alpha, \alpha \to 0 [/math], [math] x = x_0 + u, u \to 0 [/math]. Тогда [math] \lambda x = (\lambda_0 + \alpha) (x_0 + u) = \lambda_0 x_0 + (\lambda_0 u + \alpha x_0 + \alpha u) [/math]. Покажем, что вторая скобка стремится к нулю.

1) [math]\alpha x_0[/math] из радиальной окрестности нуля, значит стремится к нулю.

2) [math]\alpha \to 0 \implies |\alpha| \le 1[/math], по условию теоремы [math] \exists U(0)[/math] — уравновешенное [math] \implies \alpha U(0) \subset U(0) \implies \alpha u \to 0 [/math].

3) по условию теоремы [math]\forall U(0) \exists U_1 (0) : U_1(0)+U_1(0) \subset U(0) \implies 2U_1(0) \subset U(0)[/math]. Раз [math]U_1(0)[/math] — окрестность 0 [math] \implies \exists 2U_2(0) \subset U_1(0) ... \implies 2^n U_n(0) \subset ... \subset 2 U_1 (0) \subset U(0)[/math] [math] \implies \exists n_1 : | {\lambda_0 \over 2^{n_1}} | \lt 1 \implies [/math] если [math]u \in U_{n_1}(0), 2^{n_1} U_{n_1}(0) \subset U \implies 2^{n_1} u \in U(0) \implies {\lambda_0 \over 2^{n_1}} 2^{n_1} u \in U(0) \implies \lambda_0 u \in U \implies \lambda_0 u \to 0[/math].

Получили, что скобка стремится к нулю, значит умножение непрерывно.
[math]\triangleleft[/math]

Любое НП является частным случаем ТВП. Обратное в общем случае неверно, в связи с чем возникает вопрос о том, в каком случае ТВП можно нормировать. Ответ на него дает понятие функционала Минковского.


Определение:
Пусть [math] X [/math] — линейное пространство, [math] \mu [/math] — радиальное подмножество, тогда функционал Минковского [math] p_{\mu} [/math] определяется как [math] p_{\mu}(x) = \inf \{ \lambda \gt 0 \mid x \in \lambda \mu\} [/math].


Заметим, что если [math] M, N [/math] — радиальны и [math] M \subset N [/math], то [math] p_N(x) \le p_M(x) [/math].

Пример:

  • [math] X [/math] — НП, [math] V_1 = \{ x \mid \|x\| \lt 1\}, p_{V_1}(x) = \|x\| [/math], сдедовательно, норма — частный случай функционала Минковского.
Утверждение:
Если [math] M [/math] — уравновешенное радиальное выпуклое множество, [math] p_M(X) [/math] — полунорма на [math] X [/math].
[math]\triangleright[/math]

[math] p_M(x + y) \le p_M(x) + p_M(y) [/math]

[math] \forall \varepsilon \gt 0 \exists \lambda_1, \lambda_2: p_M(x) \lt \lambda_1 \lt p_M(x) + \varepsilon [/math], [math] p_M(y) \lt \lambda_2 \lt p_M(y) + \varepsilon [/math], [math] x \in \lambda_1 M, y \in \lambda_2 M \implies {x \over \lambda_1}, {y \over \lambda_2} \in M [/math]. Рассмотрим [math] \alpha = {\lambda_1 \over \lambda_1 + \lambda_2}, \beta = {\lambda_2 \over \lambda_1 + \lambda_2} [/math], заметим, что [math] \alpha + \beta = 1 [/math], из выпуклости получим, что [math] \alpha {x \over \lambda_1} + \beta {y \over \lambda_2} \in M \implies {x + y \over \lambda_1 + \lambda_2} \in M \implies x + y \in (\lambda_1 + \lambda_2) M [/math], то есть [math] p_M(x + y) \lt \lambda_1 + \lambda_2 \lt p_M(x) + p_M(y) + 2 \varepsilon [/math], сделав предельный переход, получим [math] p_M(x + y) \le p_M(x) + p_M(y) [/math].

Однородность:

[math]p_M (\lambda x) = \inf \{r \gt 0: \lambda x \in r M \} = \inf \{r \gt 0: x \in \frac{r}{|\lambda|} M \} [/math] [math]= \inf \{ | \lambda | \frac{r}{ | \lambda | } \gt 0: x \in \frac{r}{|\lambda|} M \} = |\lambda| p_M(x)[/math]
[math]\triangleleft[/math]


Определение:
Топологическое пространство [math]X[/math] называется Хаусдорфовым, если [math]\forall x, y \in X : x \ne y : \exists U(x) \cap U(y) = \varnothing[/math]


Теорема (Колмогоров):
Хаусдорфово ТВП нормируемо тогда и только тогда, когда у нуля есть ограниченная выпуклая окрестность.
Доказательство:
[math]\triangleright[/math]

В прямую сторону: если ТВП нормируемо, то [math] V_r = \{ x : \| x \| \le 1 \} [/math]


TODO: На всякий случай — доказательство вроде есть в Люстернике-Соболеве, стр 94, правда оно несколько другое вроде

В обратную: пусть [math] V [/math] — ограниченная выпуклая окрестность нуля. [math] W [/math] — радиальная уравновешенная) окрестность 0: [math] W \subset V [/math], [math] \mathrm{Cov} W [/math] — выпуклая оболочка множества [math] W [/math], [math] V [/math] — выпуклая, [math] \mathrm{Cov} W \subset V [/math], [math] \mathrm{Cov} W [/math] — радиальное уравновешенное множество, так как [math] W [/math] — такое же. Из ограниченности [math] V [/math] следует ограниченность [math] \mathrm{Cov} W [/math], то есть, мы построили [math] V^* = \mathrm{Cov} W [/math] — радиальную уравновешенную выпуклую окрестность [math] 0 [/math].

[math] V^* \to p_{V^*} [/math] — функционал Минковского — полунорма. [math] V^* [/math] ограничено, тогда [math] \{ {1 \over n} V^* \} [/math] — база окрестностей 0. Так как пространство Хаусдорфово, то [math] \bigcap\limits_{n=1}^{\infty} {1 \over n} V^* = \{0\} \implies p_{V^*}(x) = 0 \implies x = 0 [/math], то есть [math] p_{V^*} [/math] — норма, а [math] \{ {1 \over n} V^*\} [/math] — база окрестностей нуля, нормируемых функционалом Минковского.
[math]\triangleleft[/math]