355
правок
Изменения
м
<tex> \frac {1} {C^{|R_{k+1}|}_{|R_k|} |R_{k+1}|!} \cdot \sum_{R'_{k+1}\subset R_k} \operatorname{deg_{R_k}}(nn(R'_{k+1}[-1], R'_{k+1})) = </tex>
{{TODO|t=А нужна ли нам эта строка?}}
→Время работы
''Функция <tex>nn</tex> принимает точку и множество и возвращает ближайшего соседа заданной точки из заданного множества.''
Рассмотрим некоторый уровень <tex>S_k</tex>. Определим множество <tex>R_k=S_k\cup\{q\}</tex>. Рассмотрим все возможные подмножества <tex>R_k</tex>, равномощные <tex>R_{k+1}</tex>, тем самым рассмотрев все возможные уровни <tex>k+1</tex>. Для каждой точки из каждого подмножества <tex>R'_{k+1}</tex> рассмотрим степень ближайшей вершины и усредним всё, получив нужную нам оценку.