173
правки
Изменения
→Переход от автомата Мура к автомату Мили
Пусть символ <tex>z_{f}</tex> поступает на вход автомата Мура <tex>S_{A}</tex>, который находится в состоянии <tex>a_{m}</tex>. Следовательно, <tex>S_{A}</tex> перейдет в состояние <tex>a_{s} = \delta _{A}(a_{m}, z_{f})</tex> и выдаст сигнал <tex>w_{g} = \lambda _{A}(a_{s})</tex>.
Соответствующий автомат Мили <tex>S_{B}</tex> из состояния <tex>a_{m}</tex> также перейдет в состояние <tex>a_{s} = \delta _{B}(a_{m}, z_{f}) = \delta _{A}(a_{m}, z_{f})</tex> и выдаст тот же сигнал <tex>w_{g} = \lmbda lambda _{B}(a_{m}, z_{f}) = \lambda _{A}(\delta _{A}(a_{m}, z_{f})) = \lambda _{A}(a_{s}) = w_{g}</tex>.
Таким образом, для выходной последовательности длины 1 поведение автоматов <tex>S_{1}</tex> и <tex>S_{2}</tex> полностью совпадает. Далее по индукции получаем эквивалентность автоматов.