Изменения

Перейти к: навигация, поиск
м
references
====Доказательство принадлежности к NP====
В качестве сертификата возьмем ориентированный гамильтонов цикл в графе <math>G</math>. Очевидно, он удовлетворяет всем требованиям, налагаемым на сертификат. Проверяющая функция строится очевидным образом, работает за полиномиальное от размера входа время.
====Доказательство принадлежности к NPH<ref>Ахо, Альфред, В., Хопкрофт, Джон, Ульман, Джеффри, Д. "Структуры данных и алгоритмы" {{---}} Издательский дом «Вильямс», 2000. {{---}} С. 384. {{---}} ISBN 5-8459-0122-7 (рус.) / ISBN 0-201-00023-7 (англ.)</ref>====
[[Файл:HAM_fig1.png|200px|thumb|right|Рисунок 1]] [[Файл:HAM_fig2.png|200px|thumb|right|Рисунок 2‎]] [[Файл:HAM_fig3.png|200px|thumb|right|Рисунок 3‎]] [[Файл:HAM_fig4.png|200px|thumb|right|Рисунок 4]]
В дальнейшем это позволит нам считать, что выбор перехода из <math>a_{i}</math> в <math>b_{i0}</math> означает приписывание переменной <math>x_{i}</math> значения "истина", а перехода в <math>c_{i0}</math> {{---}} значения "ложь". Поэтому граф на рисунке 2 имеет <math>2^n</math> ориентированных гамильтоновых циклов, соответствующих <math>2^n</math> возможным подстановкам для <math>n</math> переменных.
Однако на рисунке 2 изображен лишь скелет графа, порождаемого по формуле <math>E</math>, находящейся в <math>\mathrm{3-КНФ}</math>. Каждому дизъюнкту <math>e_{i}</math> ставится в соответствие подграф <math>I_{j}</math> (рисунок 3). Он обладает тем свойством, что если цикл входит в <math>r_{j}</math>, то должен выходить из <math>u_{j}</math><ref>Хопкрофт Дж., Мотвани Р., Ульман Дж. Введение в теорию автоматов, языков и вычислений. 2-е издание. {{---}} М.: Издательский дом "Вильямс", 2002. {{---}} 528 с. {{---}} ISBN 5-8459-0261-4 (рус.)</ref>. Аналогично для <math>s, v</math> и <math>t, w</math>.
В завершение построения графа <math>G</math> для формулы <math>E</math> соединяем подграфы <math>I</math> и <math>H</math> следующим образом. Допустим, у дизъюнкта <math>e_i</math> первым литералом является <math>x_i</math>, переменная без отрицания. Выберем некоторый узел <math>c_{ip}</math>, где <math>p</math> от 0 до <math>m_{i}</math> -1, ранее не использованный для соединения с подграфами <math>I</math>. Введем дуги, ведущие из <math>c_{ip}</math> в <math>r_{j}</math> и из <math>u_{j}</math> в <math>b_{i,p+1}</math>. Если же первым литералом дизъюнкта <math>e_j</math> является отрицание <math>\bar{x_i}</math>, то нужно отыскать неиспользованный узел <math>b_{ip}</math>, а затем соединить <math>b_{ip}</math> с <math>r_{j}</math> и <math>u_{j}</math> с <math>c_{i,p+1}</math>
==Источники информации==
<references* Ахо, Альфред, В., Хопкрофт, Джон, Ульман, Джеффри, Д. "Структуры данных и алгоритмы" {{---}} Издательский дом «Вильямс», 2000. {{---}} С. 384. {{---}} ISBN 5-8459-0122-7 (рус.) />ISBN 0-201-00023-7 (англ.)* Хопкрофт Дж., Мотвани Р., Ульман Дж. Введение в теорию автоматов, языков и вычислений. 2-е издание. {{---}} М.: Издательский дом "Вильямс", 2002. {{---}} 528 с. {{---}} ISBN 5-8459-0261-4 (рус.)z
97
правок

Навигация