Изменения

Перейти к: навигация, поиск
м
|B'| = |B| + k
|statement = Пересечение всех максимальных по включению барьеров графа <tex>G</tex> равно <tex>A(G)</tex>.
|proof = <tex>\supset</tex>.<br>
Пусть <tex>B</tex> {{---}} максимальный барьер, <tex>|A(G)\setminus B| = k > 0</tex>, <tex>B' = B \cup A(G)</tex>, <tex>|B'| = |B| + k</tex>.<br>
Докажем, что <tex>B'</tex> {{---}} барьер и получим противоречие. Для этого достаточно доказать, что <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ + k</tex>, ведь в таком случае <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{def}(G)\ + |B| + k \Rightarrow \mathrm{odd}(G\setminus B')\ - |B'| \geqslant \mathrm{def}(G)</tex>. <br>
[[Файл: Max_barriers_a.png|170px|thumb|right|Рисунок 1]]
20
правок

Навигация