210
правок
Изменения
Нет описания правки
'''Нормализация батчей''' (англ. batch-normalization) {{---}} это метод, который позволяет повысить производительность и стабилизировать работу [[Нейронные сети, перцептрон | искусственных нейронных сетей]]. Суть данного метода заключается в том, что некоторым слоям нейронной сети на вход подаются данные, предварительно обработанные и имеющие нулевое среднее значение и единичную дисперсию. Впервые данный метод был представлен в <ref>https://arxiv.org/pdf/1502.03167.pdf</ref>.
==Идея==
<tex>z = g(Wu + b)</tex>,
где <tex>W</tex> и <tex>b</tex> {{---}} настраиваемые параметры модели, а <tex>g(\cdot)</tex> {{---}} некоторая нелинейная функция, например [[Практики реализации нейронных сетей#Sigmoid function|cигмоида ]] или [[Практики реализации нейронных сетей#Rectified Linear Units (ReLU)|ReLU]]. Данной функцией можно описать как обычные, так и сверточные слои нейронных сетей. Так, нормализация батчей применяется сразу перед нелинейной функцией <tex>g(\cdot)</tex> к <tex>x = Wu + b</tex>. Параметр <tex>b</tex> может быть проигнорирован последующим вычитание математического ожидания (затем роль этого параметра будет играть <tex>\beta</tex>). Поэтому <tex>z = g(Wu + b)</tex> может быть записано так:
<tex>z = g(BN(Wu))</tex>,