Доказательство нерегулярности языков: лемма о разрастании
Версия от 23:02, 14 октября 2010; Zarubkin (обсуждение | вклад)
Лемма (О разрастании): |
Пусть - регулярный язык над алфавитом , тогда существует , такой что для любого слова , длины не меньше найдутся слова , для которых верно и для всех . |
Доказательство: |
Пусть - регулярный язык над алфавитом , тогда найдётся автомат , допускающий язык . Обозначим размер автомата , как . В языке найдётся слово длины не меньше . Рассмотрим переходы в автомате . Так как не меньше количества состояний в автомате , то в переходах будет совпадение. Пусть и - первое совпадение. Тогда в нашем слове можно размножить кусок, который отвечает за переход, от состояния к состоянию .
|
Доказательство нерегулярности языка
Чаще используется отрицание леммы для доказательства нерегулярности языка. Пусть
- язык над алфавитом . Если для любого натурального найдётся такое слово из данного языка, что его длина будет не меньше и при любом разбиении на три слова такие, что не пустое слово, длина не больше , есть такое, что , то язык - не регулярный.
Пример 1 Язык правильных скобочных последовательностей не регулярен.
Пусть дан какой-то
для него предъявляем слово . После этого слово как-то разбили на . Так как , то из-за выбранного слова , где больше нуля. Для любого такого разбиения берём и получаем , что не является правильной скобочной последовательностью. Значит язык правильных скобочных последовательностей не регулярный язык.Пример 2 Язык
Пусть дан какой-то
для него предъявляем слово . После этого слово как-то разбили на . Так как , то из-за выбранного слова , где больше нуля. Для любого такого разбиения берём и получаем , что не является элементом множества слов языка , значит этот язык не регулярен.