Представление производящей функций в виде непрерывных дробей
Содержание
Определения
| Определение: |
| Непрерывная дробь (англ. continued fraction) — это бесконечное математическое выражение вида
где и есть целые числа, а — натуральные числа (положительные целые). |
| Определение: |
| Конечная непрерывная дробь (англ. finite continued fraction) — это непрерывная дробь, которая состоит из конечного набора и |
Свойства
- Любая конечная дробь представима в виде некоторой рациональной дроби , которую называют n-ой подходящей дробью.
- Всякий многочлен или дробно-рациональная функция может быть разложена в непрерывную дробь[1]:
- Например для функции :
- Любая рациональная функция раскладывается в конечную непрерывную дробь.
| Утверждение: |
Дробно-рациональная производящая функция всегда раскладывается в конечную непрерывную дробь. |
Функция Каталана в виде непрерывной дроби
Производящая функция для чисел Каталана удовлетворяет квадратному уравнению
Перепишем это уравнение в виде
или
Подставив выражение для из левой части равенства в правую часть того же равенства, получим
Подставляя вновь выражение для в получившееся равенство и продолжая этот процесс, мы получаем представление для функции Каталана в виде непрерывной дроби:
Полученное разложение нужно понимать следующим образом. Если мы оборвем непрерывную дробь на -м шаге (оставив вместо нее конечную непрерывную дробь, которая представляет собой рациональную функцию), то коэффициенты разложения полученной функции по степеням будут совпадать с коэффициентами разложения функции вплоть до члена . Заметим, что из-за наличия множителя в числителе очередной дроби, присоединяемой на -м шаге, увеличение числа членов в непрерывной дроби не приводит к изменению первых коэффициентов в ее разложении. Например,
Стабилизирующаяся часть разложения выделена.