k-связность
-cвязность — одна из топологических характеристик графа.
| Определение: | 
| Граф называется вершинно -связным, если удаление любых вершин оставляет граф связным. | 
Вершинной связностью графа называется
 вершинно  -связен  , при этом для полного графа полагаем .
| Определение: | 
| Граф называется реберно -связным, если удаление любых ребер оставляет граф связным. | 
Реберной связностью графа называется  реберно -связен , для тривиального графа считаем . 
k-связность и непересекающиеся пути между вершинами
Рассмотрим граф и вершины и .
Пусть — множество вершин/ребер/вершин и ребер.
разделяет и , если и принадлежат разным компонентам связности графа , который получается удалением элементов множества из .
Из теоремы теоремы Менгера для вершинной -связности имеем, что наименьшее число вершин, разделяющих две несмежные вершины и , равно наибольшему числу простых путей, не имеющих общих вершин, соединяющих и .
Отсюда непосредственно следует:
| Утверждение: | 
Граф   является вершинно  -связным   любая пара его вершин соединена по крайней мере  вершинно непересекающимися путями.  | 
Подобная теорема справедлива и для реберной связности. То есть из теоремы Менгера для реберной -связности следует:
| Утверждение: | 
Граф   является реберно  -связным  любая пара его вершин соединена по крайней мере -реберно непересекающимися путями.  | 
См. также
Источники информации
- Харари Ф. Теория графов.[1] — М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)
 - Форд Л., Фалкерсон Д., Потоки в сетях, пер. с англ., М., 1966