Случайные графы
| Определение: |
| Свойство ассимптотически почти наверное истинно, если |
| Определение: |
| Свойство ассимптотически почти наверное ложно, если |
Существование треугольников в случайном графе
| Теорема: |
Если , то а.п.н не содержит треугольников. |
| Доказательство: |
|
Пусть — число треугольников в графе, — индикаторная случайная величина, равная , если вершины , и образуют треугольник. Воспользуемся неравенством Маркова: , при . |
| Теорема: |
Если , то а.п.н содержит треугольник. |
| Доказательство: |
|
Пусть — число треугольников в графе, — индикаторная случайная величина, равная , если вершины , и образуют треугольник. Воспользуемся неравенством Чебышева: . Найдем :
, при |
Связность графа
| Лемма: |
Если , , . Тогда . |
| Доказательство: |
|
Пусть — индикаторная величина, равная , если связен, и , если содержит компонент связности. — число компонент связности размера . , если — компонента связности.
.
Последняя сумма симметрична (слагаемые при и равны), кроме того слагаемое при — наибольшее (для доказательства достаточно рассмотреть отношения слагаемых при и ). Оценим сверху первое слагаемое :
, поэтому . , при |
| Лемма: |
Если , , . Тогда . |
| Теорема: |
, тогда при граф а.п.н связен, при граф а.п.н не связен. |
Теоремы о связи вероятности и матожидания
| Теорема: |
Пусть — число объектов в графе . — свойство. Тогда, если , при , то а.п.н ложно. |
| Доказательство: |
|
Воспользуемся неравенством Маркова: , при . |
| Теорема: |
Пусть — число объектов в графе . — свойство. Тогда, если , при , и то а.п.н истинно. |
| Доказательство: |
|
Воспользуемся неравенством Чебышева: , при . |