Определение кольца, подкольца, изоморфизмы колец
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Определение: |
Множество , на котором заданы бинарные операции сложение и умножение, с определенными свойствами, называется кольцом.
Свойства:
|
Содержание
Подкольцо
Определение: |
Множество , которое определено относительно операций, определенных в называестя подкольцом. |
Изоморфизм колец
Теорема
Пусть
Нужно убедится,что если выполняются аксиомы кольца для , то они выполняяютсяи для . Докажем аксиому об существовании обратного элемента относительно сложения, остальное аналогично. Пусть , а его прообраз в , тогда по аксиоме об существовании обратного элемента относительно сложения . По изоморфизму , а также , значит в также выполняется эта аксиома.
Примеры колец
- — целые числа.
- — кольцо вычетов по модулю натурального числа .
- — кольцо рациональных чисел, являющееся полем.
- — кольцо вещественных чисел, являющееся полем.
- — кольцо многочленов от переменных над полем .