97
правок
Изменения
Нет описания правки
[[Лекция 2 | <<]][[Матлогика | На главную]][[Лекция 4 | >>]]
==Теорема о дедукции==
Будем обозначать буквами <tex>\Gamma, \Delta, \Sigma</tex> списки формул (возможно, пустые).
{{Определение
|definition=
Пусть <tex>\Gamma</tex> - некоторые список высказываний, <tex>\alpha</tex> - некоторое высказывание в исчислении <tex>\langle L, A, R \rangle</tex>. Тогда будем говорить, что <tex>\alpha</tex> '''выводится''' из <tex>\Gamma</tex> (запись: <tex>\Gamma \vdash \alpha</tex>), если существует доказательство <tex>\alpha</tex> в исчислении <tex>\langle L, A_1, R \rangle</tex>, где <tex>A_1</tex> - это <tex>A</tex> с добавленными формулами из <tex>\Gamma</tex>. Элементы <tex>\Gamma</tex> называются допущениями, предположениями, или гипотезами.
}}
Замечание: в этом определении появляются дополнительные предположения, поэтому речь идет именно о ''выводе'', а не о ''доказательстве''. Очевидно, что, если <tex>\Gamma = \varnothing</tex>, то <tex>\Gamma \vdash \alpha</tex> соответствует <tex>\vdash \alpha</tex>.
{{Теорема
|statement=
Пусть справедливо <tex>\Gamma \vdash \alpha \rightarrow \beta</tex>. Тогда справедливо <tex>\Gamma, \alpha \vdash \beta</tex>
|proof=
Возьмем <tex>\delta_1, ..., \delta_m</tex> --- вывод формулы <tex>\alpha \rightarrow \beta</tex>. В ней <tex>\delta_m = \alpha \rightarrow \beta</tex>. Добавим <tex>\delta_{m+1} = \alpha</tex> --- это добавленная аксиома, и <tex>\delta_{m+2} = \beta</tex>, получим вывод <tex>\beta</tex>.
}}