1679
правок
Изменения
Нет описания правки
|about=о почти перпендикуляре
|statement=
Пусть <tex>X</tex> — НП, а <tex>Y</tex> - собственное (то есть не совпадающее с <tex>X</tex>) подпространство <tex>X</tex>, тогда <tex>\forall \varepsilon \in (0, 1) \; \exists z_{\varepsilon} \in X : \|z_{\varepsilon}\| = 1,\; \rho(z_{\varepsilon}, Y) \geq 1 - \varepsilon</tex> (где <tex>\rho(z, Y) = \inf\limits_{y \in Y} \|z-y\|</tex>)
|proof=
Если <tex>Y</tex> — строго подмножество <tex>X</tex>, то существует <tex>x_0 \notin Y</tex>.
Если <tex>X</tex> - бесконечномерное НП, то единичный шар <tex>S_1 = \{ x \in X \mid \|x \| = 1\}</tex> в нем не компактен.
|proof=
Возьмем <tex>x \in S_1</tex>, <tex>Y_1 = \mathcal{L}(x_1)</tex> — собственное подпространство <tex>X</tex> (TODO: Што?? почему собственное?), применим лемму Рисса, возьмем <tex>\varepsilon = {1 \over 2}</tex>, существует <tex>x_2: \| x_2 \| = 1, \| x_2 - x_1 \| \ge {1 \over 2}</tex>, заметим, что <tex>x_2</tex> окажется в <tex>S_1</tex>.
<tex>Y_2 = \mathcal{L}(x_1, x_2)</tex>, опять применим лемму Рисса, существует <tex>x_3 \in X: \| x_3 - x_j \| \ge {1 \over 2}, j = 1, 2</tex>, <tex>x_3</tex> будет в <tex>S_1</tex>.