222
правки
Изменения
м
' : ' -> ': '
|
[[Файл:Zam.png|300px|thumb|left|Заметание плоскости вращающимся лучом]]
Однако можно это сделать за <tex> O(n ^ 2 \log n) </tex>. Идея алгоритма проста : для каждой вершины найдем видимые из нее вершины. Если научиться делать это за <tex> O(n \log n) </tex>, задача решена, так как всего точек <tex> n </tex>.
Для каждой вершины будем рассматривать только правую половину плоскости, так как ребра, которые должны идти в левую половину, будут исходить из вершин, для которых текущая вершина будет справа.
Переформулируем задачу. Дано : точка <tex> v </tex> и множество отрезков {{---}} ребер препятствий. Найти : множество концов отрезков, видимых из <tex> v </tex>.
Для решения этой задачи будем использовать заметающий луч с началом в точке <tex> v </tex>. Его статусом будут отрезки, которые его пересекают, упорядоченные по возрастанию расстояния от точки <tex> v </tex> до точки пересечения. Точками событий будут концы отрезков.
Рассмотрим задачу нахождения кратчайшего пути, когда движимый объект {{---}} это выпуклый полигон. Например, робот, которого надо доставить из начальной в конечную точку.
Если полигон вращать нельзя, задачу сводится к движению точки так : выбирается точка на полигоне, которая принимается за начало координат. В такой системе координат для каждого препятствия считается [[Сумма Минковского (определение, вычисление)|сумма Минковского]] с полигоном. Получаются бОльшие препятствия, но теперь достаточно двигать выбранную точку, что было описано выше.
Если полигон можно вращать, задача нахождения ''кратчайшего'' пути становится достаточно ресурсоёмка, поэтому обычно рассматривают задачу нахождения какого-нибудь пути между конечными точками.
Первый шаг решения этой задачи совпадает с предыдущим случаем : выберем точку и построим [[Сумма Минковского (определение, вычисление)|сумму Минковского]] препятствий с полигоном. Рассмотрим малый угол <tex> \epsilon </tex>. Представим, что поворот полигона на этот угол {{---}} это движение вверх-вниз между слоями, на каждом из которых посчитана сумма Минковского с полигоном, повернутым на этот угол.
На каждом слое построим трапецоидную карту и граф, как описано в [[Visibility graph и motion planning#Нахождение пути между точками с препятствиями|начале]]. Если [[Пересечение многоугольников (PSLG overlaying)|пересечь]] соседние слои и добавить между их графами ребра, получится один большой граф, в котором ищется кратчайший путь.
При таком подходе может возникнуть ошибка при пересечении слоев : на каждом слое состояния будут допустимые, а осуществить поворот физически будет невозможно. Обычно, эту проблему решают двумя способами : измельчением угла поворота и изначальным сглаживанием углов полигона. Первый способ повышает не только точность решения, но и вычислительную сложность задачи. Второй подход практически исключает возможность нахождения пути, когда его нет, но повышает вероятность "ненахождения" пути, когда он есть.
== Источники ==